物联网的应用如下:
1、智能仓库。物联网一个很好的应用。它能准确的提供仓库管理各个环节数据的真实性,对于生产企业,可以根据这个数据合理的把控库存量,调整生产量。物联网中利用SNHGES系统的库位管理功能,可以准确提供货物库存位置,这就大大提高了仓库管理的效率。
2、智能物流。运用条形码、传感器、射频识别技术、全球定位等先进的物联网通信技术,实现物流业运输、仓储、配送、装卸等各个环节的智能化。不仅货物运输更加的自动化,而且作出的全面分析还能及时的处理问题对物流过程作出调整,优化了管理。大大提高了物流行业的服务水平,还节约了成本。
3、智能医疗。利用物联网技术,实现患者和医务人员、医疗机构、医疗设备的互动,实现医疗智能化。物联网医疗设备中的传感器与移动设备可以对患者的生理状态进行捕捉,把生命指数记录到电子健康文件中,不仅自己可以查看,也方便了医生的查阅,实现远程的医疗看病。很好的解决当前的医疗资源分布不均,看病难的问题。
4、智能家庭。物联网的出现让我们的日常生活更加的便捷。不远的将来一台手机,就可以操作家里大多数的电器,查看它们的运行状态。寒冷的冬天,我们可以提前打开家里的空调,回到家就暖暖的。物联网还能准确的定位家庭成员的位置,你再也不用担心孩子跑的找不见人,省心省力。
5、智能农业。物联网在农业中的应用就更加的广泛。监测温湿度,监视土壤酸碱度,查看家禽的状态。在这些数据的支持下,农户就可以合理进行科学评估,安排施肥,灌溉。监测到的天气情况比如降水,风力等又为我们抗灾、减灾提供了依据。提高了产量,降低了减产风险。
6、智能交通。物联网将整个交通设备连在一起。主要是用图像识别为核心技术。可以准确的收集到交通车流量信息,通过信号灯等设备进行流量的控制,这个技术的运用,会让堵车成为历史。管理人员利用这个技术能将道路、车辆的情况掌握的一清二楚,驾驶违章无处可逃,交通事故也能及时的得到处理。人们的出行得到了很大的方便。
7、智能电力。电力工程是一项重大的民生工程,对电网的安全检测是一项必修科目。以南方电网与中国移动通过M2M技术进行的合作为例,因为物联网的运用,使得自动化计量系统开始启动,使得故障评价处理时间得到一倍的缩减。
属于。
因为蓝牙属于物联网技术,所以蓝牙耳机当然也属于物联网技术。
物联网涵盖的范围很大,它可以容纳很多种通信技术。蓝牙技术就是其中一种,那么基于蓝牙技术研发出来的蓝牙设备,自然是属于物联网设备的范畴。如我们云里物里研发的电子价签就是使用蓝牙50技术,然后研发出整套系统出来,可以应用到商超和仓储等等应用场景。然后电子价签还可以搭载定位功能,还可以搭载其他更多的功能来实现不同的需求。
二战期间,本应该凭借美貌吃饭的好莱坞女演员 Hedy Lamarr,却偏要凭实力与钢琴家 George Antheil 联手,研究跳频扩频(FHSS)技术。据相关资料记载,这项技术于1942 年8月被申请为专利。在此后近半个世纪的岁月中,这项技术一直未被重视,直到 20 世纪 80 年代,FHSS技术才被军方用于战场上的无线通讯系统。而后,FHSS技术下沉到大众市场,也影响到了蓝牙、WiFi等无线技术的发展。
时移世易,当初以FHSS为基础的蓝牙技术也发生了巨大的变化——其标准从蓝牙10升级到了蓝牙50再到LE Audio,在这场技术变迁的过程当中,蓝牙到底改变了什么?
蓝牙技术的起源
蓝牙技术最早可以追溯至 199 4年,当初,爱立信投身于蓝牙技术的研究是将其当做是RS-232数据线的替代方案。RS-232是常用的串行通信接口标准之一,它是由美国电子工业协会(EIA)联合贝尔系统公司、调制解调器厂家及计算机终端生产厂家于1970年共同制定。RS-232总线规定了25条线,包含了两个信号通道,即第一通道(称为主通道)和第二通道(称为副通道)。RS-232采用的是点对点连接,通常一个串口只能连接一个外设。而采用蓝牙技术则可以连接多个设备,从而克服了数据同步的难题。因此,蓝牙技术被视为是移动 电话 和其他配件间进行低功耗、低成本无线通信连接的方法。
199 7年,爱立信公司借此概念接触了移动设备制造商,讨论其项目合作发展并获得支持。 199 8年,爱立信、诺基亚、东芝、IBM和英特尔公司等五家企业成立了蓝牙技术联盟的前身——“特别兴趣小组”(Special Interest Group,SIG),其目标是开发一个成本低、效益高、可以在短距离范围内随意无线连接的蓝牙技术标准。在这当中,关于蓝牙的命名也发生了一件趣事。当时SIG的合同框架已经接近完成,但关于这项短据无线连接技术却还没有确定正式的名称,其备选名称PAN因偏向流行语,在当时的互联网搜索引擎中已经拥有很高的流量,因此,商标搜索没通过。英特尔的Jim Kardach建议使用蓝牙作为临时代号。后来有人引用Kardach的话说:“哈拉尔德国王蓝牙,以团结斯堪的纳维亚半岛而出名,正如我们打算通过短距离无线链路将PC和蜂窝产业结合在一起一样。”
07版是蓝牙的首个标准版本,其支持Baseband与LMP通讯协定两部分。 而后,SIG成立,又先后发布了蓝牙08版,09版、10 Draft版、10a版以及10B版。 199 9年下半年,微软、摩托罗拉、三星、朗讯与蓝牙特别小组的五家公司共同发起成立了蓝牙技术推广组织,从而在全球范围内掀起了一股蓝牙热潮。
蓝牙标准的演进推动终端应用变化
在这股蓝牙的热潮之下,蓝牙标准也伴随着技术终端应用的需求发生了改变。
199 9年所推出的蓝牙10版本,因为技术上存在着数据泄露的问题,所以,蓝牙并未立即受到广泛的应用。此外,当时对应蓝牙功能的电子设备种类少,蓝牙装置也十分昂贵,也是蓝牙未被大规模采用的原因之一。直到2001年,蓝牙11才做为首个正式商用的版本开始面向市场。该版蓝牙标准也被正式列入IEEE标准,也被称为IEEE 802151。同年,SIG成员公司超过2000家。
过了几年之后,蓝牙成为了电子产品的必备功能,其售价也因技术的成熟而大幅下降。为了扩宽蓝牙的应用层面和传输速度,SIG于2003和2004年先后推出了12(该版本为了解决容易受干扰的问题,加上了抗干扰跳频功能)、20版,并附加了很多新功能。据维基百科资料显示,20版本中增加了例如EDR(Enhanced Data Rate,配合20的技术标准,将最大传输速度提高到3Mbps)、A2DP(Advanced Audio Distribution Profile,一个控音轨分配技术,主要应用于立体声耳机)、AVRCP(A/V Remote Control Profile)等。Bluetooth 20将传输率提升至2Mbps、3Mbps,远大于1x版的1Mbps(实际约7232kbps)。蓝牙20版开始支持双工模式——即一面作语音通讯,同时也可以传输数据。也是从这个版本开始,蓝牙才被市场所认可。随后,在2007年中,SIG针对存在的问题进行了改进,并发布了蓝牙21版。此时,蓝牙技术的出现,让手机实现了可互相传输音视频以及等功能。但当时手机之间通过蓝牙连接的方式比较繁琐,配对双方都显示一个6位的数字,由用户来核对数字是否一致,并输入Yes/No,两端Yes表示一致即可配对。这种当时虽然繁琐,但却可以防止中间人攻击。
2009年,蓝牙 30 也开始面向市场,采用了全新的交替射频技术,并取消了UMB应用。在本年4月,蓝牙技术联盟颁布了蓝牙核心规范 30 版( 30 +HS),是一种全新的交替射频技术。蓝牙 30 +HS提高了数据传输速率,集成80211PAL最高速度可达24Mbps,是蓝牙20速度的8倍。此外,引入了增强电源控制,实际空闲功耗明显降低。这一特性还添加了闭环功率控制,意味着RSSI过滤可于收到回复的同时展开。此外,该版本中还增加了“直接开到最大功率(go straight to ma xi mum power)”的请求,旨在应对耳机的链路损耗,传统蓝牙耳机也逐渐流入市场。
2010年, 三位一体 蓝牙40的发布再次变革了蓝牙技术。在该版本发布之时,SIG还提出了“低功耗蓝牙”、“传统蓝牙”和“高速蓝牙”三种模式。其中,高速蓝牙主攻数据交换与传输;传统蓝牙则以信息沟通、设备连接为重点;蓝牙低功耗顾名思义,以不需占用太多带宽的设备连接为主。前身其实是NOKIA开发的Wibree技术,本是作为一项专为移动设备开发的极低功耗的移动无线通信技术,在被SIG接纳并规范化之后重命名为Bluetooth Low Energy(后简称低功耗蓝牙)。这三种协议规范还能够互相组合搭配、从而实现更广泛的应用模式,此外,Bluetooth 40还把蓝牙的传输距离提升到100米以上(低功耗模式条件下)。至此,通过蓝牙40的发布,也为接下来物联网的发展奠定了基础。
而后,2013年底,蓝牙技术联盟推出了蓝牙41规范,其目的是为了让 Bluetooth Smart技术最终成为物联网发展的核心动力。该版本提升了对LTE和批量数据交换率共存的支持,以及通过允许设备同时支持多重角色帮助开发者实现创新。通过蓝牙41版本,使得支持该标准的耳机、手表、键鼠,可以不用通过 PC、平板、手机等数据枢纽,实现自主收发数据。例如智能手表和计步器可以绕过智能手机,直接实现对话。2014年,SIG又更新了蓝牙标准,推出了蓝牙42,不但速度提升25倍,隐私性更高,还可以通过IPv6连接网络。这一技术允许多个蓝牙设备通过一个终端接入互联网或者局域网,这样,大部分智能家居产品可以抛弃相对复杂的 WiFi 连接,改用蓝牙传输,让个人传感器和家庭间的互联更加便捷快速。
2016年,蓝牙标准伴随着物联网应用的爆发也进行了继续演进,在此期间,SIG发布了蓝牙50版本,相比蓝牙40版本,50在传输速度提升了两倍,传输距离增加了四倍,数据传输量提升八倍,同时可以与 Wi-Fi 共存,不互相干扰。2019年,SIG又推出了蓝牙51,新增寻向功能,将蓝牙定位的精准度提升到厘米级,功耗更低、传输更快、距离更远、定位更精准。伴随着蓝牙51标准的推出,也让业界看到了将蓝牙技术应用于室内定位的前景,这也是目前蓝牙技术的未来发展前景之一。
此外,伴随着万物互联时代的来临,蓝牙技术也进行了吸收和扩展。除蓝牙1、2、3、4、5系列标准以外,蓝牙技术联盟于2017年7月正式宣布,蓝牙技术开始全面支持Mesh网状网络,据悉,蓝牙Mesh将兼容蓝牙 4 和 5 系列的协议。全新的Mesh功能提供设备间多对多传输,并特别提高构建大范围网络覆盖的通信能力,适用于楼宇自动化、无线传感器网络等需要让数以万计个设备在可靠、安全的环境下传输的物联网解决方案。伴随着蓝牙Mesh的推出,智能家居得到了极大的发展,该领域也被视为是蓝牙未来发展的又一方向。在2018年的国际消费电子展上,阿里巴巴与联发科宣布携手推动蓝牙Mesh技术,签署合作协议,打造了首款支持蓝牙Mesh技术的Smartmesh无线连接方案。
蓝牙新标准将再次对终端应用进行改革
2020年1月,蓝牙技术联盟在拉斯维加斯举办的CES2020上发布了其新一代蓝牙音频技术标准——低功耗音频LE Audio。该方案伴随着TWS耳机的爆发而被受 关注 ,因此,有业内人士认为,LE Audio蓝牙标准将再次对终端应用产生重大影响。
众所周知,此前传统蓝牙耳机没有得到广泛的使用,是因为其音质和续航时间并不令人满意。而采用了LE Audio蓝牙标准的TWS耳机,可以在低能耗下实现在更长的距离上传输更好的声音。据SIG官方网站介绍,在提升音质方面,LE Audio蓝牙标准中包括一个新的高质量,低功耗音频编解码器,即低复杂度通信编解码器(LC3)。LC3即使在低数据速率下也能提供高质量,它将为开发人员带来巨大的灵活性,使他们能够在关键产品属性(例如音频质量和功耗)之间进行更好的设计折衷。据相关报道显示,LC3的质量提高了三倍,传输音频时的能耗却降低了三倍。
据相关报道显示,SIG将于今年推出LE Audio的独立功能,SIG期望芯片制造商能够在明年至18个月的时间内发布支持LE Audio的新设计。这是因为LE Audio需要手机端先支持LE Audio标准后,TWS耳机才更有意义。因此,在这种情况下,TWS耳机还距离其真正的爆发时期还有一段距离。
同时,SIG在其官网中还介绍道,LE Audio将不仅为TWS耳机带来发展机会,这项标准也将推动其他音频产品的发展。例如,LE Audio将推动蓝牙助听器的开发,从而为越来越多的听力损失者带来蓝牙音频的所有好处。LE Audio还将添加广播音频,使音频源设备可以将一个或多个音频流广播到无限数量的音频接收器设备。广播音频为创新提供了重要的新机遇,其中包括启用新的蓝牙用例“音频共享”。蓝牙音频共享可以是个人的或基于位置的。通过个人音频共享,人们将能够与周围的其他人共享蓝牙音频体验;例如,与家人和朋友共享智能手机中的音乐。通过基于位置的音频共享,机场,酒吧, 体育 馆,**院和会议中心等公共场所现在可以共享蓝牙音频,从而增强访问者的体验。
结语
通过上述资料显示,蓝牙从最初的音频传输、图文传输、视频传输,演变成为了物联网传输的主角。尤其是在去年当中,蓝牙技术的发展也带动了TWS耳机市场变革。从蓝牙技术的变迁中看,它的发展对下游终端产品影响巨大。伴随着近几年来,终端产品的多样化趋势,也为蓝牙的发展带来了新的机会。
同时,蓝牙作为无线通信中的一员,蓝牙技术还需要与WiFi等其他无线传输技术进行竞争,蓝牙技术如何在这场竞争中保持优势,是值得业界所 关注 的。
蓝牙5和WiFi其实都是比较适合物联网应用的,具体的看产品的应用场景、是否需要联网以及内置协议啥的是WiFi 更适合,还是蓝牙更适合。
需要联网,对传输距离有要求,传输数据偏大的,毫无疑问,WiFi 会更加适合;
不需要联网,只是要高速率的数据采集、传输及智能控制,则蓝牙50会更为适合,低功耗,工业级,高性能的50蓝牙模块SKB501就蛮适合的。
LoRa
LoRa(长 距离)是由Semtech公司开发的一种技术,典型工作频率在美国是915MHz,在欧洲是868MHz,在亚洲是433MHz。LoRa的物理层 (PHY)使用了一种独特形式的带前向纠错(FEC)的调频啁啾扩频技术。这种扩频调制允许多个无线电设备使用相同的频段,只要每台设备采用不同的啁啾和 数据速率就可以了。其典型范围是2km至5km,最长距离可达15km,具体取决于所处的位置和天线特性。
LoRa芯片在整个产业链中处于基础核心地位,重要性不言而喻。值得注意的是,目前美国Semtech公司是LoRa芯片的核心供应商,掌握着LoRa底层技术的核心专利。而Semtech的客户主要有两种,一是获得Semtech LoRa芯片IP授权的半导体公司;二是直接采用Semtech芯片做SIP级芯片的厂商,包括微芯 科技 (Microchip)等。
Wi-Fi
Wi-Fi被广泛用于许多物联网应用案例,最常见的是作为从网关到连接互联网的路由器的链路。然而,它也被用于要求高速和中距离的主要无线链路。
大多数Wi-Fi版本工作在24GHz免许可频段,传输距离长达100米,具体取决于应用环境。流行的80211n速度可达300Mb/s,而更新的、工作在5GHz ISM频段的80211ac,速度甚至可以超过13Gb/s。
一 种被称为HaLow的适合物联网应用的新版Wi-Fi即将推出。这个版本的代号是80211ah,在美国使用902MHz至928MHz的免许可频段, 其它国家使用1GHz以下的类似频段。虽然大多数Wi-Fi设备在理想条件下最大只能达到100米的覆盖范围,但HaLow在使用合适天线的情况下可以远达1km。
80211ah 的调制技术是OFDM,它在1MHz信道中使用24个子载波,在更大带宽的信道中使用52个子载波。它可以是BPSK、QPSK或QAM,因此可以提供宽 范围的数据速率。在大多数情况下100kb/s到数Mb/s的速率足够用了——真正的目标是低功耗。Wi-Fi联盟透露,它将在2018年前完成 80211ah的测试和认证计划。
针对物联网应用的另外一种新的Wi-Fi标准是80211af。它旨在使用从54MHz到698MHz范围内的电视空白频段或未使用的电视频道。这些频道 很适合长距离和非视距传输。调制技术是采用BPSK、QPSK或QAM的OFDM。每个6MHz信道的最大数据速率大约为24Mb/s,不过在更低的 VHF电视频段有望实现更长的距离。
ZigBee
ZigBee,也称紫蜂,是一种低速短距离传输的无线网上协议,底层是采用IEEE 802154标准规范的媒体访问层与物理层。主要特色有低速、低耗电、低成本、支持大量网上节点、支持多种网上拓扑、低复杂度、快速、可靠、安全。ZigBee是物联网的理想选择之一。
虽然ZigBee一般工作在24GHz ISM频段,但它也可以在902MHz到928MHz和868MHz频段中使用。在24GHz频段中数据速率是250kb/s。它可以用在点到点、星形和网格配置中,支持多达254个节点。与其它技术一样,安全性是通过AES-128加密来保证的。ZigBee的一个主要优势是有预先开发好的软件应用配 置文件供具体应用(包括物联网)使用。最终产品必须得到许可。
ZigBee技术所采用的自组织网是怎么回事?举一个简单的例子就可以说明这个问题,当一队伞兵空降后,每人持有一个ZigBee网络模块终端,降落到地面后,只要他们彼此间在网络模块的通信范围内,通过彼此自动寻找,很快就可以形成一个互联互通的ZigBee网络。而且,由于人员的移动,彼此间的联络还会发生变化。因而,模块还可以通过重新寻找通信对象,确定彼此间的联络,对原有网络进行刷新。这就是自组织网。
NB-IoT
窄带物联网(Narrow Band Internet of Things, NB-IoT)成为万物互联网络的一个重要分支。NB-IoT构建于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络,以降低部署成本、实现平滑升级。
NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,也被叫作低功耗广域网(LPWAN)。NB-IoT支持待机时间长、对网络连接要求较高设备的高效连接。据说NB-IoT设备电池寿命可以提高至少10年,同时还能提供非常全面的室内蜂窝数据连接覆盖。
蓝牙50
蓝牙是一种无线传输技术,理论上能够在最远 100 米左右的设备之间进行短距离连线,但实际使用时大约只有 10 米。其最大特色在于能让轻易携带的移动通讯设备和电脑,在不借助电缆的情况下联网,并传输资料和讯息,目前普遍被应用在智能手机和智慧穿戴设备的连结以及智慧家庭、车用物联网等领域中。新到来的蓝牙 50 不仅可以向下相容旧版本产品,且能带来更高速、更远传输距离的优势。
以上就是关于物联网应用领域有哪些全部的内容,包括:物联网应用领域有哪些、蓝牙耳机属于物联网技术、蓝牙的那些年等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!