名词解释:什么是信息技术

物联网0271

名词解释:什么是信息技术,第1张

信息技术(Information Technology,缩写 IT),是主要用于管理和处理信息所采用的各种技术的总称。它主要是应用计算机科学和通信技术来设计、开发、安装和实施信息系统及应用软件。它也常被称为信息和通信技术(Information and Communications Technology, ICT)。主要包括传感技术、计算机与智能技术、通信技术和控制技术。

基本含义

人们对信息技术的定义,因其使用的目的、范围、层次不同而有不同的表述:

凡是能扩展人的信息功能的技术,都可以称作信息技术。

信息技术“包含通信、计算机与计算机语言、计算机游戏、电子技术、光纤技术等”。

现代信息技术“以计算机技术、微电子技术和通信技术为特征”。

信息技术是指在计算机和通信技术支持下用以获取、加工、存储、变换、显示和传输文字、数值、图像以及声音信息,包括提供设备和提供信息服务两大方面的方法与设备的总称。

信息技术是人类在生产斗争和科学实验中认识自然和改造自然过程中所积累起来的获取信息,传递信息,存储信息,处理信息以及使信息标准化的经验、知识、技能和体现这些经验、知识、技能的劳动资料有目的的结合过程。

信息技术是管理、开发和利用信息资源的有关方法、手段与操作程序的总称。

信息技术是指能够扩展人类信息器官功能的一类技术的总称。

信息技术指“应用在信息加工和处理中的科学,技术与工程的训练方法和管理技巧;上述方法和技巧的应用;计算机及其与人、机的相互作用,与人相应的社会、经济和文化等诸种事物。”

信息技术包括信息传递过程中的各个方面,即信息的产生、收集、交换、存储、传输、显示、识别、提取、控制、加工和利用等技术。

信息技术是研究如何获取信息、处理信息、传输信息和使用信息的技术。

“信息技术教育”中的“信息技术”,可以从广义、中义、狭义三个层面来定义。

广义而言,信息技术是指能充分利用与扩展人类信息器官功能的各种方法、工具与技能的总和。该定义强调的是从哲学上阐述信息技术与人的本质关系。

中义而言,信息技术是指对信息进行采集、传输、存储、加工、表达的各种技术之和。该定义强调的是人们对信息技术功能与过程的一般理解。

狭义而言,信息技术是指利用计算机、网络、广播电视等各种硬件设备及软件工具与科学方法,对文图声像各种信息进行获取、加工、存储、传输与使用的技术之和。该定义强调的是信息技术的现代化与高科技含量。

信息技术的应用包括计算机硬件和软件,网络和通讯技术,应用软件开发工具等。计算机和互联网普及以来,人们日益普遍地使用计算机来生产、处理、交换和传播各种形式的信息(如书籍、商业文件、报刊、唱片、**、电视节目、语音、图形、影像等)。

在企业、学校和其它组织中,信息技术体系结构是一个为达成战略目标而采用和发展信息技术的综合结构。它包括管理和技术的成分。其管理成分包括使命、职能与信息需求、系统配置和信息流程;技术成分包括用于实现管理体系结构的信息技术标准、规则等。由于计算机是信息管理的中心,计算机部门通常被称为“信息技术部门”。有些公司称这个部门为“信息服务”(IS)或“管理信息服务”(MIS)。另一些企业选择外包信息技术部门,以获得更好的效益。

物联网和云计算作为信息技术新的高度和形态被提出、发展。根据中国物联网校企联盟的定义,物联网为当下几乎所有技术与计算机互联网技术的结合,让信息更快更准地收集、传递、处理并执行,是科技的最新呈现形式与应用。

应用范围

信息技术的研究包括科学,技术,工程以及管理等学科,这些学科在信息的管理,传递和处理中的应用,相关的软件和设备及其相互作用。

信息技术的应用包括计算机硬件和软件、网络和通讯技术、应用软件开发工具等。计算机和互联网普及以来,人们日益普遍的使用计算机来生产、处理、交换和传播各种形式的信息(如书籍、商业文件、报刊、唱片、**、电视节目、语音、图形、图像等)。

技术分类

按表现形态的不同,信息技术可分为硬技术(物化技术)与软技术(非物化技术)。前者指各种信息设备及其功能,如显微镜、电话机、通信卫星、多媒体电脑。后者指有关信息获取与处理的各种知识、方法与技能,如语言文字技术、数据统计分析技术、规划决策技术、计算机软件技术等。

按工作流程中基本环节的不同,信息技术可分为信息获取技术、信息传递技术、信息存储技术、信息加工技术及信息标准化技术。信息获取技术包括信息的搜索、感知、接收、过滤等。如显微镜、望远镜、气象卫星、温度计、钟表、Internet 搜索器中的技术等。

信息传递技术指跨越空间共享信息的技术,又可分为不同类型。如单向传递与双向传递技术,单通道传递、多通道传递与广播传递技术。信息存储技术指跨越时间保存信息的技术,如印刷术、照相术、录音术、录像术、缩微术、磁盘术、光盘术等。信息加工技术是对信息进行描述、分类、排序、转换、浓缩、扩充、创新等的技术。

信息加工技术的发展已有两次突破:从人脑信息加工到使用机械设备(如算盘,标尺等)进行信息加工,再发展为使用电子计算机与网络进行信息加工。信息标准化技术是指使信息的获取、传递、存储,加工各环节有机衔接,与提高信息交换共享能力的技术。如信息管理标准、字符编码标准、语言文字的规范化等。

日常用法中,有人按使用的信息设备不同,把信息技术分为电话技术、电报技术、广播技术、电视技术、复印技术、缩微技术、卫星技术、计算机技术、网络技术等。也有人从信息的传播模式分,将信息技术分为传者信息处理技术、信息通道技术、受者信息处理技术、信息抗干扰技术等。

按技术的功能层次不同,可将信息技术体系分为基础层次的信息技术(如新材料技术、新能源技术),支撑层次的信息技术(如机械技术、电子技术、激光技术、生物技术、空间技术等),主体层次的信息技术(如感测技术、通信技术、计算机技术、控制技术),应用层次的信息技术(如文化教育、商业贸易、工农业生产、社会管理中用以提高效率和效益的各种自动化、智能化、信息化应用软件与设备)。

社会功能

信息产业

随着信息化在全球的快速进展,世界对信息的需求快速增长,信息产品和信息服务对于各个国家、地区、企业、单位、家庭、个人都不可缺少。信息技术已成为支撑当今经济活动和社会生活的基石。在这种情况下,信息产业成为世界各国,特别是发达国家竞相投资、重点发展的战略性产业部门。在过去的 10 年中,全世界信息设备制造业和服务业的增长率是相应的国民生产总值(GNP)增长率的两倍,成为带动经济增长的关键产业。其中美国经济在近 10 年的持续快速增长中,年均 GDP 增长 36%,而电子信息产业对 GDP 增长的贡献为 14 个百分点。可以毫不夸张地说美国经济的持续增长得益于信息技术的支撑和信息产业的带动是不为过的。信息产业本身经过多年的高速增长,已成为全球最大的产业之一。在二十世纪九十年代中期,一些发达国家信息经济领域的增长超过了 GNP 的 50%,美国则超过了 75%,2000 年全球信息产品制造业产值高达 15000 亿美元,成为世界经济的重要支柱产业。

“九五”期间,中国的信息产业以三倍于国民经济的速度发展,主要产品销量迅速增加,结构调整初见成效,部份关键技术有所突破,产业规模已居世界第四位。2000 年底信息产品制造业总产值达 10000 亿元,销售收入 5800 亿元,成为国民经济第一支柱产业。信息产业的增加值占全国 GDP 的 4%,电子产品出口额约占全国出口总额的 1/5,信息产业对国民经济的贡献率显著提高。

发展趋势

信息技术推广应用的显著成效,促使世界各国致力于信息化,而信息化的巨大需求又驱使信息技术高速发展。当前信息技术发展的总趋势是以互联网技术的发展和应用为中心,从典型的技术驱动发展模式向技术驱动与应用驱动相结合的模式转变。

微电子技术和软件技术是信息技术的核心。集成电路的集成度和运算能力、性能价格比继续按每 18 个月翻一番的速度呈几何级数增长,支持信息技术达到前所未有的水平。每个芯片上包含上亿个元件,构成了“单片上的系统”(SOC),模糊了整机与元器件的界限,极大地提高了信息设备的功能,并促使整机向轻、小、薄和低功耗方向发展。软件技术已经从以计算机为中心向以网络为中心转变。软件与集成电路设计的相互渗透使得芯片变成“固化的软件”,进一步巩固了软件的核心地位。软件技术的快速发展使得越来越多的功能通过软件来实现,“硬件软化”成为趋势,出现了“软件无线电”“软交换”等技术领域。嵌入式软件的发展使软件走出了传统的计算机领域,促使多种工业产品和民用产品的智能化。软件技术已成为推进信息化的核心技术。

三网融合和宽带化是网络技术发展的大方向。电话网、有线电视网和计算机网的三网融合是指它们都在数字化的基础上在网络技术上走向一致,在业务内容上相互覆盖。电话网和电视网在技术上都要向互联网技术看齐,其基本特征是采用 IP 协议和分组交换技术;在业务上要话音为主或单向传输发展成交互式的多媒体数据业务为主。三网融合不能简单地理解为把三个网合成一个网,但它的确打破了原有的行业界限,将引起产业的重组与政策的调整。随着互联网上数据流量的迅猛增加,特别是多媒体信息的增加,对网络带宽的要求日益提高。增大带宽,是相当长时期内网络技术发展的主题。在广域网和城域网上,以密集波分复用技术(DWDM)为代表的全光网络技术引人注目,带动了光信息技术的发展。宽带接入网技术多种方案展开了激烈的竞争,鹿死谁手尚难见分晓。无线宽带接入技术和建立在第三代移动通信技术之上的移动互联网技术,正向信息个人化的目标前进。

互联网的应用开发也是一个持续的热点。一方面电视机、手机、个人数字助理(PDA)等家用电器和个人信息设备都向网络终端设备的方向发展,形成了网络终端设备的多样性和个性化,打破了计算机上网一统天下的局面;另一方面,电子商务、电子政务、远程教育、电子媒体、网上娱乐技术日趋成熟,不断降低对使用者的专业知识要求和经济投入要求;互联网数据中心(IDC),网门服务等技术的提出和服务体系的形成,构成了对使用互联网日益完善的社会化服务体系,使信息技术日益广泛地进入社会生产、生活各个领域,从而促进了网络经济的形成。

主要特征

有人将计算机与网络技术的特征——数字化、网络化、多媒体化、智能化、虚拟化,当作信息技术的特征。我们认为,信息技术的特征应从如下两方面来理解:

信息技术具有技术的一般特征——技术性。具体表现为:方法的科学性,工具设备的先进性,技能的熟练性,经验的丰富性,作用过程的快捷性,功能的高效性等。

信息技术具有区别于其它技术的特征——信息性。具体表现为:信息技术的服务主体是信息,核心功能是提高信息处理与利用的效率、效益。由信息的秉性决定信息技术还具有普遍性、客观性、相对性、动态性、共享性、可变换性等特性。

教育体系

信息技术教育有两个方面的涵义:一是指学习与掌握信息技术的教育。二是指采用信息技术进行教育活动。前者从教育目标与教育内容方面来理解信息技术教育,后者则从教育的手段和方法来理解信息技术教育。由此,可对“信息技术教育”作如下定义:

信息技术教育是指学习、运用信息技术,培养信息素质,实现学与教优化的理论与实践。

该定义的理解中值得注意的几个问题:

信息技术教育包括理论与实践两个领域。理论领域指信息技术教育是一门科学,是现代教育学研究的一个新分支,又具有课程教学论的一些特征,具体包括概念体系、理论框架、原理、命题、模式、方法论等研究内容。实践领域指信息技术教育是一种教学活动,一种工作实践,一项教育现代化事业,具体包括信息技术的软硬件资源建设、课程教材的设计开发、师资培训、教学中各种信息技术的综合运用、学习指导、评价与管理等。

信息技术教育的本质是利用信息技术培养信息素质。这里,“利用信息技术”只是一种手段和工具,最终目的是培养学生的信息素质,以适应信息社会对人才培养标准的要求。

信息素质是指人所具有的对信息进行识别、加工、利用、创新、管理的知识、能力与情操(意)等各方面基本品质的总和,是人的一种基本生存素质。为此,我们应明确信息技术教育的指导思想:不只是为了让学生掌握信息技术知识而开展信息技术教育,而是通过信息技术教育,全面提高学生的信息素质。换句话说,信息技术教育不等于软硬件知识学习。而是要使学生通过掌握包括计算机、网络在内的各种信息工具的综合运用方法,来培养学生的处理、创新的能力,为适应信息社会的工作、学习与生活打下良好基础。

信息技术教育的范畴包括学习信息技术和利用信息技术促进学习两个方面。这里明确指出了开展信息技术教育的两种教学形式(专门课程式与学科渗透式)。我们不但要开设专门的《信息技术》课程,重点培养学生运用计算机与网络等现代信息工具的知识和能力;而且要在所有课程的教学中,运用各种传统的与现代的信息工具促进了学生的学习,要渗透信息技术教育思想,培养学生对各种学科信息的综合处理与创新能力。

信息技术教育的途径与模式有多种。除采用学校课堂教学模式外,还可采用课外活动模式、家庭教育模式、远程协作学习模式。其中,基于项目活动的教学模式能较好解决理论知识与实践技能、学习竞争与协作的结合问题,能有效地培养学生的信息素质,是一种非常实用的学校信息技术教育模式,值得推广。

人工智能

发展历程

人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。

在 1955 的时候,香农与人一起开发了 The Logic TheoriST 程序,它是一种采用树形结构的程序,在程序运行时,它在树中搜索,寻找与可能答案最接近的树的分枝进行探索,以得到正确的答案。这个程序在人工智能的历史上可以说是有重要地位的,它在学术上和社会上带来的巨大的影响,以至于我们所采用的思想方法有许多还是来自于这个 50 年代的程序。

1956 年,作为人工智能领域另一位著名科学家的麦卡希召集了一次会议来讨论人工智能未来的发展方向。从那时起,人工智能的名字才正式确立,这次会议在人工智能历史上不是巨大的成功,但是这次会议给人工智能奠基人相互交流的机会,并为未来人工智能的发展起了铺垫的作用。在此以后,人工智能的重点开始变为建立实用的能够自行解决问题的系统,并要求系统有自学习能力。在 1957 年,香农和另一些人又开发了一个程序称为 General Problem Solver(GPS),它对 Wiener 的反馈理论有一个扩展,并能够解决一些比较普遍的问题。别的科学家在努力开发系统时,右图这位科学家作出了一项重大的贡献,他创建了表处理语言 LISP,直到许多人工智能程序还在使用这种语言,它几乎成了人工智能的代名词,到了今天,LISP 仍然在发展。

在 1963 年,麻省理工学院受到了美国政府和国防部的支持进行人工智能的研究,美国政府不是为了别的,而是为了在冷战中保持与苏联的均衡,虽然这个目的是带点火药味的,但是它的结果却使人工智能得到了巨大的发展。其后发展出的许多程序十分引人注目,麻省理工大学开发出了 SHRDLU。在这个大发展的 60 年代,STUDENT 系统可以解决代数问题,而 SIR 系统则开始理解简单的英文句子了,SIR 的出现导致了新学科的出现:自然语言处理。在 70 年代出现的专家系统成了一个巨大的进步,他头一次让人知道计算机可以代替人类专家进行一些工作了,由于计算机硬件性能的提高,人工智能得以进行一系列重要的活动,它作为生活的重要方面开始改变人类生活了。在理论方面,70 年代也是大发展的一个时期,计算机开始有了简单的思维和视觉,而不能不提的是在 70 年代,另一个人工智能语言 Prolog 语言诞生了,它和 LISP 一起几乎成了人工智能工作者不可缺少的工具。不要以为人工智能离我们很远,它已经在进入我们的生活,模糊控制,决策支持等等方面都有人工智能的影子。让计算机这个机器代替人类进行简单的智力活动,把人类解放用于其它更有益的工作,这是人工智能的目的。

就业前景

人才需求

伴随着互联网的发展。IT 人才的短缺现象将会越来越严重。据保守估计,中国市场对 IT 人才的需求每年超过 20 万人。而国内 IT 教育主要是高等学校计算机、电子、电信、信息技术等相关专业的学历教育,每年培养的大学毕业生约为 5 万,远远不能满足市场的需要。IT 技术人员的极度短缺,迫使许多公司不得不提供高薪才能聘请到符合要求的专业人员,而这些职位优厚的待遇吸引了很多非 IT 人员。于是许多人设法通过各种培训来获得这些职位

工作需求

IT 行业良好的就业前景及薪酬待遇吸引了大量非计算机专业的人,大部分是年轻人。他们迫切需要依靠学习和培训获得进入 IT 业的技术能力。而另一个方面,IT 行业中职业的变化和更替也是最为频繁的,它要求从业者必须不断地学习才能保持这种持续工作的状态。同时一个人学习的技术越先进,掌握的技术越全面,那么这个人的事业发展前景就越广阔,工作选择的机会就越大。此外,由于互联网技术的飞速发展,很多掌握过时技术的人员也不得不重新进行培训,以使自己能够与最新的技术同步。随着中国经济的不断发展,信息化程度不断提高,各个企业对信息化投入的比例逐步加大,因此要求在职人员必须要学会操作微机。

加入 WTO 刺激了培训市场的需求

中国加入 WTO,商务运作将会呈现出举足轻重的地位。国际、国内商务、企业竞争将使得商家对人才的要求更高,只有那些接受过专业培训的、具备熟练技能和扎实专业知识的人才能适应全球化贸易市场的要求。

兴趣爱好

现代人面临的并不是知识危机,因为很多人都拥有大专以上的学历,知识不再是危机。现代人越来越多体验到的是本领和技能的危机。他们个人需要培训的愿望很强烈,愿意出钱培训,所以针对本领和技能方面的培训市场会越来越大。另外,现代人生活质量提高了,面对个人兴趣方面的培训市场会多起来,在工作之后,人们根据自己的兴趣爱好来选择一些培训,充实和丰富自己的生活。

高校教育机制存在着不足

高等教育在计算机专业传统的教育理论型、研究型人才培养上有较大的优势,但在应用型人才的培养上存在层次单一,教学内容滞后,理论与实践严重脱节的情况,课程设置陈旧,设施跟不上,使得大多数毕业生理论有余,岗位需要的专业应用技术相对不足。许多毕业生、甚至需要较长的培训才能胜任工作,有的甚至还不如参加过短期培训的人员。这种状况最终造成很多计算机专业的专科、本科毕业生,捧着大学毕业证找不到工作。

发展前景

21 世纪初,人类将全面迈向一个信息时代,信息技术革命是经济全球化的重要推动力量和桥梁,是促进全球经济和社会发展的主导力量,以信息技术为中心的新技术革命将成为世界经济发展史上的新亮点。信息技术将使人类能够进一步把潜藏在物质运动中的巨大信息资源挖掘出来,把世界变成一个没有边界的信息空间,以微处理机进入亿万办公室和家庭、超级计算机问世、卫星通信与光导通信的发展,特别是网络化的迅速发展为标志的,信息技术革命不仅以最为便捷的方式沟通了各国、各地区、各企业、各团体以及个人之间的联系,而且在一定程度上打破了种种地域乃至国家的限制,把整个世界空前地联系在一起,推动了全球化的迅速发展。由于这次新科技革命主要是从美国兴起,日本和西欧各国随后迅速推进,形成了一个强大的中心区和三角地带,所以约阿吉姆·比朔夫甚至列出了这样一个公式:“全球化=世界中心区域的紧密网络化”,但由于新科技革命的发展需要雄厚的科研力量、昂贵的设备器材、巨额资金和良好的革础设施,而广大发展中国家经济发展水平普追较低,不仅难以跟上世界新科技革命的脚步,而且被西方国家越拉越远,从而在全球化进程中也就被进一步边缘化。

国际互联网的普及提供了加强各国经济联系的新纽带,信息的快速搜集、加工、储存和传递,使各国政府、公司企业和个人能便捷地获取信息。信息的这种透明性(公开性)和流动性,有利于各国政府和人民间的相互了解、有利于科学文化知识的传播、有利于政府和企业的科学决策,从而必然有利于各国间的经济合作国际互联网将不断提高金融、贸易、企业全球经营的效率和质量计算机技术的不断发展,使国际互联网可以及时处理几乎无限的信息,这就为全球居民提供了参加国际经济合作的手段:银行可以每天处理 15 万亿美元的货币交易:证券市场每年可以处理几十万亿美元的证券交易:海陆空运输可以从容地把数亿个集装箱送往世界各地:跨国公司可以了如指掌地指挥全球的分厂在流水线上按顾客的需要生产出同一牌号、不同个性的产品(如汽车)。企业在新世纪里的竞争力将取决于它对于网络的运用,企业若不利用网络,则会在未来的全球竞争中处于劣势、甚至会被排斥在商务圈之外。信息技术的发展,对企业管理也提出了新的挑战,它要求企业实行集成管理,将上游和下游的环节形成一个整体,通过网络对全球的资源进行优化配置,取得最佳的经济效益因此,企业只有放眼世界,才有可能在未来的信息时代求得生存和发展。

国际互联网的发展将在 21 世纪大大促进全球实务经济和服务业的发展,极大地改变人类的生产、生活方式知识将成为对世纪生产要素中的一个独立成分。哪个国家能在技术创新和制度创新方面走在世界的前列,这个国家就能在 21 世纪的国际竞争中立于不败之地。20 世纪的历史表明,单靠不断增加资本、人力和原材料的投入不能实现经济的可持续发展,也不可能在因际竞争中处于有利地位只有稗于技术创新和制度创新的国家,才能充分利用各种资源,实现经济的可持续发展,并在国际竞争中立于不败之地。技术创新和制度创新需要受过良好教育的高素质的公民和让每个公民的才能得以充分发挥的社会环境。显然,技术创新和制度创新需要知识,而全体国民知识水平的提高需要发展教育。然而,一个国家国民教育的高水平,并不等于这个国家就善于进行技术创新和制度创新,就一定能够嵌得国际竞争的胜利。前苏联就是一个国民教育水平很高但没有赢得国际竞争的国家,更重要的是要创造让全体公民充分发挥自己才智的社会条件。在 21 世纪,哪些国家认识到了这一点并做到了这一点,这些国家就会在国际竞争中成为强者。

但是,全球生活在贫困之中的人尚难得到信息革命的实惠。

联合国的资料显示,在发达困家,信息产业正成为朝阳产业,而穷国和富国在因特网用户数量方面的差距比其在国民收入方面的差距更为悬殊。55 个信息技术领先国家投入信息技术产业的资金占全球信息技术投资的 990/0,世界上 93%的互联网用户生活在发达国家,在全世界数亿网民中,收入最低的 1/5 人口中只拥有全球因特网用户的 02%。美国所拥有的计算机数量多于世界其他国家的总和。由此可见,现代信息技术的飞速发展,将使不同国家之间以及不同地区之间信息化的差距逐渐拉大。“信息贫困”和“数码鸿沟”会在富裕国家与贫穷国家之间筑起。

布局初探

本文首先论述了数字信息技术对城市旅游产业布局的影响,构建了数字信息技术支持下的城市旅游信息系统,并结合武汉市的实际情况探讨了数字化旅游信息系统对其旅游产业布局优化的促进作用。

关键词:数字化 信息技术 旅游产业布局

在全球化、信息化的背景下,新技术的应用、数字化城市旅游信息系统的建立将为政府旅游决策部门提供全面、系统、科学的决策依据,为促进城市旅游业的发展提供强大的技术背景。数字信息技术主要是指利用地理信息系统(GIS)、通讯网络和多媒体等技术构建数字化城市中的旅游信息系统,进行旅游信息的采集、整理、加工、处理、传输、查询和展示,以此辅助旅游管理和旅游规划中的决策,全面指导城市旅游业的发展,并为旅游者提供及时准确的旅游信息服务。

数字信息技术对城市旅游产业布局的影响

数字信息技术在旅游业中的应用,将引起城市旅游产业中诸多构成要素的调整和优化,进而促进城市旅游产业布局更趋于合理和科学,同时为建立城市旅游信息系统提供指导,更好地满足城市和旅游发展的需要,提高城市旅游产出的能力,树立旅游产业的支柱产业地位或主导产业地位。

本文编译自zdnet

据知名芯片分析公司Linley Group称,智能手机等边缘设备上的人工智能推理的芯片吸引了越来越多的初创公司和风险投资。

“有更多新的初创公司不断涌现,并继续试图与众不同。”Linley Group的高级分析师Mike Demler在接受 ZDNet 电话采访时表示。

在最近一次于 10 月在加州圣克拉拉举行的线上线下同步活动中,包括Flex Logix、Hailo Technologies、Roviero、BrainChip、Syntiant、Untether AI、Expedera 和 Deep AI 等初创公司分别谈论他们的芯片设计。

Demler 和团队定期编写一份题为《深度学习处理器指南》的研究报告,最新版本预计将于本月发布。 “在这个最新版本中,我统计了 60 多家芯片供应商。”他告诉 ZDNet。

Edge Cortix

边缘AI已成为一个笼统的术语,主要指不在数据中心内的所有事物,尽管它可能包括位于数据中心边缘的服务器。它的范围从智能手机到使用谷歌TinyML 框架微瓦功率级别的嵌入式设备。

Demler 说,其中功耗从几瓦到 75 瓦不等的边缘AI芯片,是市场中最拥挤的部分,通常采用可插拔 PCIe 或 M2 卡的形式。 (75 瓦是 PCI 总线限制。)

“PCIe 卡是市场的热门部分,用于工业人工智能、机器人技术、交通监控。”他解释说。 “你已经看到了 Blaize、FlexLogic 等公司——其中很多公司都在追求这一领域。”

但真正的低功耗也相当活跃。“我想说的是 tinyML 领域也很火爆,从几毫瓦到几微瓦不等。”

Hailo软件工具链

大多数器件都是专用于人工智能的“推理”阶段。

推理发生在神经网络程序经过训练之后,这意味着它的可调参数已经完全开发到足以可靠地形成预测并且可以投入应用。

Demler说,初创公司面临的最初挑战实际上是从一个漂亮的PPT到工程中实际应用。许多人从FPGA仿真开始,然后转向销售成品SoC,或者将他们的设计变为可整合到客户SoC中的IP。

“我们仍然看到许多初创公司对冲他们的赌注,或者尽可能多地追求灵活的收入模式。”Demler 说,“首先在 FPGA 上进行演示,并提供他们的核心 IP 以进行许可。一些初创公司还提供基于 FPGA 的版本作为产品。”

Roviero

市场上有数十家供应商,因此真正点亮的芯片,也面临着各种竞争与挑战。

“很难总结出各家的真正不同。”Demler说。 “我已经看了几十个宣称‘世界第一’或‘世界最好’的PPT。”

有些公司一开始采用了不同的方法,以至于他们很早就脱颖而出,但花了一些时间才结出硕果。

澳大利亚悉尼的 BrainChip Holdings 在 2011 年就开始使用芯片来处理脉冲神经网络,这是一种人工智能的神经形态方法,旨在更准确地模拟人脑的功能。

多年来,该公司展示了其技术如何执行任务,例如使用机器视觉识别赌场地板上的扑克筹码。

“BrainChip 一直在坚决低追求这种尖端架构。”Demler 说。 “它具有独特的能力,它可以真正在设备上学习”,从而进行训练和推理。

FlexLogix

从某种意义上说,BrainChip 是所有初创公司中走得最远的:它上市了。其股票在澳大利亚证券交易所上市,股票代码为“BRN”,去年秋天,该公司发行了美国存托股票,在美国场外交易市场交易,股票代码为“BCHPY”。自那以后,股票的价值已经翻了三倍多。

BrainChip 刚刚开始产生收入。该公司在 10 月份推出了适用于 x86 和 Raspberry Pi 的“Akida”处理器的迷你 PCIe 板,并于上个月宣布了新的 PCIe 板,价格为 499 美元。该公司在 12 月季度的收入为 110 万美元,高于上一季度的 10 万美元。 年度总收入250 万美元,运营亏损 1400 万美元。

事实证明,其他一些奇特的方法很难在实践中实现。芯片初创公司 Mythic 成立于 2012 年,总部位于德克萨斯奥斯汀,一直在寻求使用模拟技术实现AI的新颖路线,它不是处理 1 和 0,而是通过操纵实时的模拟电信号进行计算。

“Mythic 已经生产了一些芯片,但还没有公布我们所知道的任何设计导入。”Demler观察到。“每个人都同意,理论上,模拟应该具有功率效率优势,但在商业上实现这一点要困难得多。”

ArchiTek

Demler 指出,另一家在处理器大会上展示的初创公司 Syntiant 也是以模拟芯片设计方法开始,但认为模拟没有提供足够的功耗优势,并且开发周期更长。

加州欧文市的 Syntiant 成立于 2017 年,专注于非常简单的物体识别,它可以在功能机或可穿戴式设备上以低功耗运行。

“在功能机上,您不需要应用处理器,因此 Syntiant 解决方案是完美的。”Demler说道。

Demler 表示,无论任何一家初创公司是否成功,AI的实用性都意味着AI加速将作为一种芯片技术持续存在。

“人工智能在许多领域变得如此普遍,包括 汽车 、嵌入式处理、物联网、移动、PC、云等,专用加速器将变得司空见惯,就像 GPU 用于图形一样。”

Expedera

尽管如此,Demler 说,在通用 CPU、DSP 或 GPU 上运行某些任务会更有效率。这就是为什么英特尔和英伟达以及其他公司正在使用特殊指令(例如矢量处理)来继续他们的架构。

只要风投市场现金充裕,养料丰富,一千朵鲜花都可以绽放,市场可以有不同的方法进行 探索 。

“仍然有如此多的风险投资资金进入这一市场,我对这些增量感到震惊。”Demler说。

Demler 指出,成立于 2018 年的加州圣何塞的 Simaai 获得了巨额融资,该公司正在开发其所谓的“MLSoC”,专注于降低功耗。该公司在 B 轮融资中获得了 8000 万美元。

另一个是特拉维夫的 Hailo Technologies,该公司成立于 2017 年,根据 FactSet 的数据,该公司已母鸡了 3205 亿美元,其中包括最近一轮的 1 亿美元,据称估值为 10 亿美元。

“来自中国的数据,如果属实,将更加惊人。”Demler说,风投资金看起来将暂时继续。 “在风险投资界决定投资其他东西之前,你会看到这些公司将继续获得热捧。”

在某个时候,会发生一次洗牌,但那一天何时到来尚不清楚。

“一些公司最终会离开。”Demler沉思道。“无论是从现在开始的 3 年还是 5 年后,我们都会在这个领域看到更少的公司。”

随着物联网的逐渐铺开,人们已经在生活中看到了越来越多的物联网模块:智能水表,共享单车,等等。目前的物联网仍然主要由运营商推动,物联网模块需要使用标准蜂窝协议与基站通讯。由于基站需要覆盖尽可能大的面积,因此物联网模块需要能做到在距离基站很远时仍能通讯,这就对于物联网模块的射频发射功率有了很高的要求;从另一个角度来说,物联网模块在做无线通讯时仍然需要消耗高达30mA的电流,这使得目前的物联网模组仍然需要配合较高容量的电池(如五号电池)才能工作,这也导致了物联网模组的尺寸很难做小。

为了能进一步普及物联网,必须克服这个功耗以及尺寸的限制。例如,如果未来要把物联网做到植入人体内,则不可能再搭配五号电池,而必须使用更小的电池甚至使用能量获取系统从环境中获取能量彻底摆脱电池的限制。为了实现这个目标,从通讯协议上说,可以使用更低功耗的自组网技术,类似BLE;而从电路实现上,则必须使用创新电路来降低功耗。

能量获取技术

根据之前的讨论,目前电池的尺寸和成本都已经成为了限制IoT设备近一步进入潜在市场的瓶颈。那么,有没有可能使用从环境中获得能量来支持物联网节点工作呢这种从环境中获取能量来支持物联网节点工作的模块叫做“能量获取”(energy harvesting),目前能量获取电路芯片的研究已经成为了研究领域的热门方向。

目前最成熟的能量获取系统可以说是太阳能电池。传统太阳能电池能提供较好的能量获取效率,但是付出的代价是难以集成到CMOS芯片上。最近,不少研究机构都在使用新型CMOS太阳能电池,从而可以和物联网节点的其他模块集成到同一块芯片上,大大增加了集成度并减小模组尺寸。当然,集成在CMOS芯片上的太阳能电池需要付出低能量输出的代价,目前常见的CMOS片上太阳能电池在室内灯光下能提供nW等级的功率输出,而在强光下能提供uW级别的功率输出,这就对物联网模组的整体功耗优化提出了很高的要求。另一方面,也可以将能量获取与小尺寸微型电池配合使用,当光照较好时使用太阳能电池而在光照较弱时使用备用电池,从而提升整体物联网模组的电池寿命。

除了太阳能电池外,另一个广为人知的环境能量就是WiFi信号。今年ISSCC上,来自俄勒冈州立大学的研究组发表了从环境中的WiFi信号获取能量的芯片。先来点背景知识:WiFi的最大发射功率是30dBm(即1W),在简单的环境里(即没有遮挡等)信号功率随着与发射设备的距离平方衰减,在距离3m左右的距离信号功率就衰减到了1uW(-30dBm)左右,而如果有物体遮挡则会导致功率更小。俄勒冈州立大学发表的论文中,芯片配合直径为15cm的天线可以在非常低的无线信号功率(-33dBm即500nW)下也能工作给电池充电,能量获取效率在5-10%左右(即在距离发射源3m的情况下输出功率在50nW左右)。因此,WiFi信号也可以用来给物联网模组提供能量,但是其输出功率在现实的距离上也不大,同样也需要节点模组对于功耗做深度优化。

另外,机械能也可以作为物联网节点的能量获取来源。压电效应可以把机械能转换为电能,从而使用压电材料(例如压电MEMS)就能为物联网节点充电。使用压电材料做能量源的典型应用包括各种智能城市和工业应用,例如当有车压过减速带的时候,减速带下的物联网传感器上的压电材料可以利用车辆压力的机械能给传感器充电并唤醒传感器,从而实现车辆数量统计等。这样,机械压力即可以作为需要测量的信号,其本身又可以作为能量源,所以在没有信号的时候就无需浪费能量了!压电材料的输出功率随着机械能的大小不同会有很大的区别,一般在nW-mW的数量级范围。

唤醒式无线系统

传统的IoT无线收发系统使用的往往是周期性通讯或主动事件驱动通讯的方案。周期性通讯指的是IoT节点定期打开与中心节点通讯,并在其他时间休眠;事件驱动通讯则是指IoT节点仅仅在传感器监测到特定事件时才与中心节点通讯,而其它时候都休眠。

在这两种模式中,都需要IoT节点主动与中心节点建立连接并通讯。然而,这个建立连接的过程是非常消耗能量的。因此,唤醒式无线系统的概念就应运而生。

什么是唤醒式无线系统就是该该系统在大多数时候都是休眠的,仅仅当主节点发射特定信号时才会唤醒无线系统。换句话说,连接的建立这个耗费能量的过程并不由IoT节点来完成,而是由中心节点通过发送唤醒信号来完成。

当建立连接的事件由中心节点来驱动时,一切都变得简单。首先,中心节点可以发射一段射频信号,而IoT节点可以通过能量获取(energy harvesting)电路从该射频信号中获取能量为内部电容充电。当IoT节点的电容充电完毕后,无线连接系统就可以使用电容里的能量来发射射频信号与中心节点通讯。这样一来,就可以做到无电池操作。想象一下,如果不是使用唤醒式无线系统,而是使用IoT主动连接的话,无电池就会变得困难,因为无法保证IoT节点在需要通讯的时候在节点内有足够的能量。反之,现在使用唤醒式系统,中心节点在需要IoT节点工作时首先为其充电唤醒,就能保证每次IoT节点都有足够能量通讯。

那么,这样的唤醒式无线系统功耗有多低呢在2016年的ISSCC上,来自初创公司PsiKick发表的支持BLE网络的唤醒式接收机在做无线通讯时仅需要400 nW的功耗,而到了2017年ISSCC,加州大学圣地亚哥分校发表的唤醒式接收机更是把功耗做到了45 nW,比起传统需要毫瓦级的IoT芯片小了4-6个数量级!

来自UCSD的45 nW超低功耗唤醒式接收机

反射调制系统

唤醒式接收机主要解决了无线链路中如何低功耗接收信号的问题,但是在如果使用传统的发射机,则还是需要主动发射射频信号。发射机也是非常费电的,发射信号时所需的功耗常常要达到毫瓦数量级。那么,有没有可能在发射机处也做一些创新,降低功耗呢

确实已经有人另辟蹊径,想到了不发射射频信号也能把IoT节点传感器的信息传输出去的办法,就是由华盛顿大学研究人员提出的使用发射调制。反射调制有点像在航海和野外探险中的日光信号镜,日光信号镜通过不同角度的反射太阳光来传递信息。在这里,信号的载体是太阳光,但是太阳光能量并非传递信号的人发射的,而是作为第三方的太阳提供的。类似的,华盛顿大学研究人员提出的办法也是这样:中心节点发射射频信号,IoT节点则传感器的输出来改变(调制)天线的发射系数,这样中心节点通过检测反射信号就可以接收IoT节点的信号。在整个过程中IoT节点并没有发射射频信号,而是反射中心节点发出的射频信号,这样就实现了超低功耗。

华盛顿大学的Shyam Gollakota教授率领的研究组在反射调制实现的超低功耗IoT领域目前已经完成了三个相关项目。去年,他们完成了passive WiFi和interscatter项目。Passive WiFi用于长距离反射通信,使用WiFi路由器发射功率相对较高的射频信号,而IoT节点则调制天线反射系数来传递信息。多个IoT节点可以共存,并使用类似CDMA扩频的方式来同时发射信息。interscatter则用于短距离数据传输,使用移动设备发射功率较低的射频信号,而IoT节点则调制该射频信号的反射来实现信息传输的目的。Passive WiFi和interscatter芯片的功耗都在10-20微瓦附近,比起动辄毫瓦级别的传统IoT无线芯片小了几个数量级,同时也为物联网节点进入人体内等应用场景铺平了道路。

Passive WiFi(上)与Interscatter(下)使用反射调制,分别针对长距离与短距离应用。

Passive WiFi和Interscatter还需要使用电信号因此需要供电,而Gollakota教授最近发表的Printed WiFi则是更进一步,完全不需要供电了!

在物联网的应用中,许多需要检测的物理量其实不是电信号,例如速度,液体流量等等。这些物理量虽然不是电物理量,但是由于目前主流的信号处理和传输都是使用电子系统,因此传统的做法还是使用传感器电子芯片把这些物理量转化为电信号,之后再用无线连接传输出去。其实,这一步转化过程并非必要,而且会引入额外的能量消耗。Printed WiFi的创新之处就是使用机械系统去调制天线的反射系数,从而通过反射调制把这些物理量传输出去。这样,在IoT节点就完全避免了电子系统,从而真正实现无电池工作!

目前,这些机械系统使用3D打印的方式制作,这也是该项目取名Printed WiFi的原因。

上图是Printed WiFi的一个例子,即转速传感器。弹簧、齿轮等机械器件在上方测速仪旋转时会周期性地闭合/打开最下方天线(slot antenna)中的开关,从而周期性地(周期即旋转速度)改变最下方天线的反射特性,这样中心节点只要通过反射射频信号就能读出旋转速度。最下方的图是该传感器在不同转速时的反射信号在时间域的变化情况,可见通过反射信号可以把转速信息提取出来。

超低功耗传感器

物联网节点最基本的目标就是提供传感功能,因此超低功耗传感器也是必不可少。目前,温度、光照传感器在经过深度优化后已经可以实现nW-uW数量级的功耗,而在智能音响中得到广泛应用的声音传感器则往往要消耗mW数量级甚至更高的功耗,因此成为了下一步突破研发的重点。

在声音传感器领域,最近的突破来自于压电MEMS。传统的声音传感器(即麦克风)必须把整个系统(包括后端ADC和DSP)一直处于活动待机状态,以避免错过任何有用的声音信号,因此平均功耗在接近mW这样的数量级。然而,在不少环境下,这样的系统其实造成了能量的浪费,因为大多数时候环境里可能并没有声音,造成了ADC、DSP等模组能量的浪费。而使用压电MEMS可以避免这样的问题:当没有声音信号时,压电MEMS系统处于休眠状态,仅仅前端压电MEMS麦克风在待命,而后端的ADC、DSP都处于休眠状态,整体功耗在uW数量级。而一旦有用声音信号出现并被压电MEMS检测到,则压电MEMS麦克风可以输出唤醒信号将后面的ADC和DSP唤醒,从而不错过有用信号。因此,整体声音传感器的平均功耗可以在常规的应用场景下可以控制在uW数量级,从而使声音传感器可以进入更多应用场景。

超低功耗MCU

物联网节点里的最后一个关键模组是MCU。MCU作为控制整个物联网节点的核心模组,其功耗也往往不可忽视。如何减小MCU的功耗MCU功耗一般分为静态漏电和动态功耗两部分。在静态漏电部分,为了减小漏电,可以做的是减小电源电压,以及使用低漏电的标准单元设计。在动态功耗部分,我们可以减小电源电压或者降低时钟频率来降低功耗。由此可见,降低电源电压可以同时降低静态漏电和动态功耗,因此能将电源电压降低的亚阈值电路设计就成了超低功耗MCU设计的必由之路。举例来说,将电源电压由12V降低到05V可以将动态功耗降低接近6倍,而静态漏电更是指数级下降。当然,亚阈值电路设计会涉及一些设计流程方面的挑战,例如如何确定亚阈值门电路的延迟,建立/保持时间等都需要仔细仿真和优化。在学术界,弗吉尼亚大学的研究组发布了动态功耗低至500nW的传感器SoC,其中除了MCU之外还包括了计算加速器和无线基带。在已经商业化的技术方面,初创公司Ambiq的Apollo系列MCU可以实现35uA/MHz的超低功耗,其设计使用了Ambiq拥有多年积累的SPOT亚阈值设计技术。在未来,我们可望可以看到功耗低至nW数量级的MCU,从而为使用能量获取技术的物联网节点铺平道路。

结语

随着物联网的发展,目前第一代广域物联网已经快速铺开走进了千家万户。然而,广域物联网节点由于必须满足覆盖需求,因此射频功耗很难做小,从而限制了应用场景(例如人体内传感器等无法使用大容量电池的场景)。局域物联网将会成为物联网发展的下一步,本文介绍的能量获取技术配合超低功耗无线通信、MCU和传感器可望让物联网节点突破传统的限制,在尺寸和电池寿命方面都得到革命性的突破,从而为物联网进入可植入式传感器等新应用铺平道路。

以上由物联传媒转载,如有侵权联系删除

ESP32可以使用的系统有FreeRTOS和LwIP,FreeRTOS是嵌入式系统中常用的操作系统,它可以支持多任务、多优先级,并且配有多种通信协议,如Modbus通信协议等;LwIP是一个开源协议栈,它可以实现IPv4/IPv6、TCP/UDP、SNMP等协议,能够满足多种应用场景。

根据产业信息网发布的数据,预计在2025年物联网连接数达到251亿台,复合增长率达到153%。而物联网终端设备的增长,也刺激了相应的市场需求。据IDC数据显示,2020年至2022年,全球WiFi和蓝牙芯片的出货量分别为91亿颗、98亿颗,以及102亿颗,2017年至2022年间的复合增长率约为63%。

随着5G、物联网的发展,通信芯片也将迎来新的局面,无论是市场需求的提升,还是政策红利等的释放,都会让这一领域受到更大的关注。对于国产通信芯片企业而言,而是难得的“转折点”。事实上,近年来,国产通信芯片企业正紧跟通信技术的发展步伐,紧抓市场空白不断打磨自身技术及产品,逐渐有了可以和国际巨头争夺市场的机会。

由国内领先的半导体电子信息媒体芯师爷举办的“2022年硬核中国芯”评选,汇聚了百余家中国半导体芯片产业的知名企业、潜力企业。本文精选了今年参评的近20款通讯类芯片产品,以期为市场提供优质产品选型攻略。

以下产品排名不分先后

智联安

智联安成立于2013年,是一家专业从事蜂窝物联网通信芯片研发的IC设计企业。自创立以来,智联安始终坚持核心技术自主创新,公司现阶段主要产品为5G NB-IoT、4G LTE及5G NR蜂窝通信芯片。

5G高精定位芯片

MK8510

MK8510为首款5G高精度低功耗定位芯片,采用28nm先进工艺,符合国内三大运营商在5G NR FR1频段的要求,单芯片集成MCU、基带处理器、模拟单元、射频及电源管理模块,真正实现5G NR下一代蜂窝物联网单芯片定位解决方案。

芯翼信息科技

芯翼信息科技成立于2017年,目前,公司已构建了属于自己的中低速率物联网芯片版图,并在智慧城市、智慧物流、智慧农业、可穿戴设备等领域广泛落地。其自主研发的超高集成度5G NB-IoT系统单芯片SoC XY1100已率先推出并实现规模商用,渗透到水表、燃气表、定位追踪、智慧城市等消费终端领域。

5G NB-SoC

XY1200

芯翼信息科技XY1200作为新一代NB-IoT高集成度单芯片,具有超高集成度、超低功耗、支持免32K晶振设计、免校准设计、丰富的安全引擎等优势,将于2022年下半年推出,面向智能表计、智能烟感、定位追踪等应用领域。其CPU主频可调范围更大,AP接近专业级MCU功耗水平;Memory配置更多,方便客户使用,兼顾成本和灵活性。

5G AIoT SoC

XY2100S

芯翼信息科技自主研发的XY2100S,是业界首次把通讯、低功耗MCU(计算)、传感器模拟前端(感知)等多种功能集成在单芯片(SoC)。作为全球首颗公共事业(表计+烟感)行业专用NB-IoT SoC,XY2100S集成低功耗MCU,解决了MCU模式下的功耗瓶颈,主要面向智能表计、烟感等应用领域。

桃芯科技

桃芯科技成立于2017年,是一家物联网终端芯片提供商,公司专注于BLE 50及以上通信协议技术,始终坚持自主研发关键核心技术,以品质为基石,在国内率先推出拥有自主知识产权的BLE 50/51/53芯片,打破了由国际知名蓝牙厂商垄断中高端市场的局面。

ING916X系列

ING916X系列芯片拥有自主知识产权完整协议栈技术、混合信号SOC及低功耗技术、蓝牙+定位技术,可广泛应用于AoA/AoD定位、超低功耗传感器应用、汽车、Mesh自组网、HID、智能电网、智能表计、工业智能、智慧农业等领域。

方寸微

方寸微成立于2017年,公司致力于国产高端密码处理器、高性能网络安全芯片、高速接口控制芯片的研发、设计和销售。作为网络安全SoC处理器的核心供应商,方寸微产品已大量商用于各类信息安全终端,在集成电路架构设计、安全密码算法、核心技术自主可控、大规模量产及品质管控等综合能力上具有国内领先的优势。

国产高速USB30控制器芯片T630

T630芯片集成国产32位高性能RISC CPU,支持USB30、MUXIO、I2C等多种接口,可快速在嵌入式主板上与FPGA/CPU进行对接通讯,作为USB30外扩芯片与PC或服务器实现数据传输。可广泛应用于视频采集卡、视频会议摄像头、监控摄像头、数字摄录机、工业照相机、测量和测试设备、医疗成像设备、打印机、扫描仪、指纹采集终端等众多电子产品。

翱捷科技

翱捷科技是一家提供无线通信、超大规模芯片的平台型芯片企业。公司专注于无线通信芯片的研发和技术创新,同时拥有全制式蜂窝基带芯片及多协议非蜂窝物联网芯片设计与供货能力,且具备提供超大规模高速SoC芯片定制及半导体IP授权服务能力。目前,已成为国内少数同时在“5G+AI”领域完成技术和产品突破的企业。公司各类芯片产品可应用于以手机、智能可穿戴设备为代表的消费电子市场及以智慧安防、智能家居、自动驾驶为代表的智能物联网市场。

ASR595X

ASR595X是一款低功耗、高性能、高度集成的Wi-Fi 6+Bluetooth LE 51 combo SoC芯片。其支持目前最新的Wi-Fi 6协议,也支持WPA3、OFDMA、TWT、MU-MIMO、LDPC等关键功能,同时配合内部集成的BLE 51协议提供更便捷和快速的BLE配网方式。既可作为主控芯片使用,也可作为WLAN连接的功能芯片搭配外部主控。搭载芯来科技RISC-V处理器内核,支持鸿蒙OS、阿里OS、FreeRTOS等多操作系统。可广泛适用于如智能照明、安全、遥控、电器等各类应用,家庭自动化、可穿戴式电子产品、网状网络、工业无线控制、传感器网络等产品。

ASR1803

ASR1803是翱捷科技新一代LTE Cat4芯片,采用了22nm先进成熟工艺;集成了ARM Cortex A7处理器;支持4层1阶PCB;支持RTOS和Linux操作系统;所占内存小,可为客户不同产品的开发提供灵活选择。为使客户产品能有更快的boot速度,该芯片支持全新的动态电压调节技术及QSPI NOR/NAND Flash,能有效降低工作电压、降低功耗。该芯片可广泛应用于民用及工业与行业应用当中。

ASR1606

ASR1606作为翱捷科技新一代LTE Cat1 bis芯片,采用了更高集成度的单芯片SoC方案、先进成熟的22nm制程工艺并且集成了主频达到624MHz的ARM Cortex-R5处理器以及Modem通信单元、Codec音频单元、PSRAM+Flash存储单元和PMIC,使得芯片封装尺寸更小、性能更强大。可广泛应用于各类标准数据模块,并且在Tracker、共享设备、电网、车联网及各种形式智能硬件等领域拥有出色表现。

北极芯

北极芯成立于2019年,是一家以RISC-V指令集架构为基础,自主研发异构网络融合通信标准IARV-IPRF架构,专注于IA-AIIPD通信芯片、IA-3DIPD存储芯片、智能应用处理器SoC的设计公司。北极芯以“自由、开放、创新”为理念,通过资源整合、技术与业务模式创新,构建完整的“信息技术应用创新生态”产业链,以提升中国基础软硬件核心竞争力。

AIoT通信芯片/IA-RF

北极芯AIIPD芯片/IA-IPRF是一款兼容多协议、宽频宽带半双工/全双工射频无线收发器芯片,集成两个独立的可编程频率合成器。该芯片的频率、带宽及增益可编程能力使其成为多种收发器应用的理想选择。该收发器既集成RF前端与灵活的混合信号基带部分为一体,也集成可编程时钟产生模块,使ADC&DAC采样可编程。

芯象半导体

芯象半导体成立于2014年,公司专注于高集成度数模混合SoC通信芯片设计,目前已形成较为完善的通信类、主控类以及计算处理类芯片产品线。主要应用领域为用电信息采集、低压智能配电物联网、数字光伏管理,智能用电管理等。

SIG800E

SIG800E是一款HPLC+HRF双模方案级SoC芯片,算力、连接一体化架构,适配未来数字能源领域对边缘算力需求的强劲增长。该芯片可双模通道独立工作,融合自组网,独立完成主控、拓扑识别、模拟量采集、HPLC+HRF双模通信功能。在配网自动化、分布式光伏发电、智能家居等领域,可帮助客户打造算力领先,成本极致的一站式解决方案。

移芯通信

移芯通信成立于2017年,公司专注于蜂窝移动通信芯片及其软件的研发和销售,所有核心技术和IP全部自研,包含算法&架构、射频、基带、SoC、协议栈软件、平台&应用软件和硬件方案,致力于设计世界领先的蜂窝物联网芯片。自成立以来,移芯通信已向市场推出两款NB-IoT芯片、一款Cat1bis芯片,均已量产。目前,移芯通信已完成累计超15亿元人民币融资。

NB-IoT芯片

EC616S

EC616S为业内首颗外围仅需18颗器件的超高集成NB-IoT芯片,其采用QFN52封装,芯片尺寸仅66mm,支持NB最小模组尺寸1010mm设计。EC616S主要应用于LPWA低功耗广域网通信及物联网领域,适用于低功耗,广覆盖,低速率,大容量的广域网连接应用,面向智能表计、智能烟感、定位追踪、共享经济、工业互联等物联网领域。

Cat1bis芯片

EC618

EC618为全球首款基带、射频、电源实现一体化设计的高集成度Cat1bis芯片,内部集成电源管理芯片,外围器件数量减少30%以上,尺寸仅有61mm61mm,以更低成本支持客户多样化功能需求。同时,其极低的待机功耗可以极大延长终端产品待机时间,满足用户超长待机需求,更好地适配于Tracker、可穿戴、共享、对讲等应用场景。

千米电子

千米电子成立于2019年,针对物联网行业存在的关键问题,历时五年多成功研发出LaKi超低功耗实时广域网技术,包括MAC层的LaKiplus和PHY层的射频SoC,这也是目前全球唯一能够同时实现广覆盖、低功耗和低时延的无线通讯技术。其带宽高达1MHz,大幅提升了物联网的投资回报,适合物联网低成本大规模海量终端接入,具备成为物联网基础设施核心技术的潜力。

LK2400A

LK2400系列是根据物联网通讯和数据特点定制的射频SoC芯片,集成了32位CPU、射频、基带、时钟、功率放大、AES128加密等,在1秒响应的长距离通讯时年功耗只有30mAh左右,比其他无线技术低两到三个数量级,可广泛应用于速率1Mbps以内的大多数物联网应用。

磐启微

磐启微成立于2010年,是一家智慧物联网、工业互联网芯片设计企业,目前公司拥有低功耗远距离ChirpIoT系列、多协议系列、BLE-lite系列三大产品,广泛应用于资产管理、室内定位、工业互联、智能家居、智慧城市等领域。磐启微以“物联互联”为基本,着眼于国家三大基础设施建设,矢志成为国际一流的芯片设计企业。

PAN3029

PAN3029是一款采用ChirpIoTTM调制解调技术的低功耗远距离无线收发芯片,支持半双工无线通信,通过自由网关可兼容LinkWANTM协议。该芯片具有高抗干扰性、高灵敏度、低功耗和超远传输距离等特性。最高具有-142dBm的灵敏度,22dBm的最大输出功率,产生业界领先的链路预算,使其成为远距离传输和对可靠性要求极高的应用的最佳选择。

博流智能科技

博流智能科技成立于2016年,是一家专注于研发世界领先的超低功耗、智能物联网和边缘计算等领域的系统芯片,并提供智能云平台整体解决方案的企业。同时,公司自主开发了完整的超低功耗MCU与高精度模拟sensor hub技术平台,多模无线联接技术、音视频处理与人工智能算法/神经网络处理器(NPU)技术,能自主完整实现单芯片多技术集成的SOC芯片研发。

BL606P

BL606P是一款支持Wi-Fi/BT/Zigbee三模通讯协议、同时集成多路麦克风阵列语音Codec和双核处理器的SoC单芯片,是智能语音领域具有高性价比的解决方案,可用于智能音箱、智能中控面板等领域。

BL616

BL616是国产首款基于WiFi6通讯协议的Wi-Fi/BT/Zigbee三合一SoC芯片,该芯片同时支持语音codec、视频DVP sensor、以及DBI/RGB屏显,适用于智能家居、低功耗门铃、AIOT中控面板等领域。

炬芯科技

炬芯科技股份有限公司成立于2014年,于2021年科创板上市。总部位于珠海,在深圳、合肥、上海、香港等地均设有分部。炬芯科技是中国领先的低功耗系统级芯片设计厂商,专注于中高端智能音频SoC的研发、设计及销售,为无线音频、智能穿戴及智能交互等智慧物联网领域提供专业集成芯片。公司主要产品为蓝牙音频SoC芯片系列、便携式音视频SoC芯片系列、智能语音交互SoC芯片系列等,广泛应用于智能手表、蓝牙音箱、蓝牙耳机、蓝牙语音遥控器、蓝牙收发一体器、智能教育、智能办公等领域。

ATS2831P

炬芯科技ATS2831P系列采用CPU+DSP双核异构架构,支持最新的蓝牙53标准,支持LE audio,集成了蓝牙射频(RF)和基带、电源管理单元(PMU)、音频编解码器及微控制单元(MCU)等模块,集蓝牙发射和蓝牙接收功能于一体,规格完整,性能领先。在提供超低延时的高品质音频信号传输的同时,通过内置的高性能DSP实现后端音效处理和AI降噪算法进一步提升整体音质表现。

力合微电子

力合微电子成立于2002年,是行业领先的物联网通信芯片企业,公司专注于电力线载波通信技术和芯片开发。在物联网底层通信、算法及芯片设计拥有完整核心技术。针对物联网应用,力合微电子推出基于电力线的统一通信接口 PLBUS PLC专用芯片方案,实现“有电线,即可通信”。公司核心技术与芯片产品已广泛应用于智能家居全屋智控、智能照明、智慧城市路灯照明、工业物联控制等领域。

PLBUS PLC

电力线通信系列芯片

PLBUS PLC全屋智能电力线通信芯片是为物联网(智能家居)智能终端提供完全自主研发、高集成度、高性能、高性价比基于电力线通信的SoC芯片,实现“通过电线,即可通信”。其符合国家标准3198331以及国际PLC标准IEEE19011,内置高性能MCU,集成了完整的物理层通信协议。开创了国内OFDM窄带PLC时代,也成为电力线通信国家标准的基础。

华冠半导体

华冠半导体成立于2011年,是一家专业从事半导体器件研发,封装、测试和销售为一体的国家高新企业。公司拥有国际先进的半导体集成电路封装测试生产线,具备实现年产值3亿人民币,年出货量20亿块集成电路生产能力。目前产品有电源管理、运算放大器、逻辑器件、MOSFT以及特殊电路等,主要应用于汽车电子、医疗电子、物联网、网络通讯等领域。

HGX3075

HGX3075是一款具有热插拔、失效保护、±16KV ESD保护的33V RS485收发器,可广泛应用于RS-422/485通讯方案、数字电表、水表、工业控制、工业电脑、外设、安防监控、路由器等项目。

-End-

免责声明

本文来自腾讯新闻客户端创作者,不代表腾讯新闻的观点和立场。

点击展开全文

打开腾讯新闻,阅读体验更好

抽红包,抽中就送!每人限抽8次,快来试试手气吧

广告

凹印

打开

腾讯新闻

参与讨论

成立于1997年的联发科是 台湾 芯片产业的重要代表。

成立伊始,专注于光驱芯片的联发科凭借将DVD内分别承担视频和数字解码功能的两颗芯片整合到一颗芯片上并提供软件的整合方案一举成名,产品也受到当时的DVD厂商的极力追捧,公司也拿下了这个市场的半壁江山。

但联发科并不满足于此。在创始人蔡明介先生的推动下,联发科在2003年推出了第一颗手机芯片,正式投身手机行业,并依赖于其“Turn key”方案在功能机时代呼风唤雨。进入了智能机时代的联发科虽然几经浮沉,但他们也锁定了全球第二大手机芯片供应商的位置。

但在过去几年,由于智能手机终端市场失去了魔力,高通和展锐等厂商两头夹攻,曾经叱咤风云的联发科备受质疑。但公司似乎在最近已经醒过神来,重返赛道。这次转型也是他们能够顺利走向未来的关键一役。

5G和AI是未来的支柱

诚然,以5G为例,因为拥有高速、高带宽和低延迟的特性,新一代的移动网络标准被产业誉为革命性的进化。背后催生的应用场景和市场规模是不可估量的。同样的情况也出现在几乎能无处不在的AI身上。

作为通信领域的弄潮儿,联发科是绝不会错过这个时代。

在上月初的台北电脑展上,联发科推出了他们的首款5G SoC。据介绍,这个使用7nm工艺打造的,集成了Arm最新的Cortex-A77 CPU和Mali-G77 GPU的SoC拥有极其强悍的运算性能,而联发科本身的5G Modem M70也能为这个SoC提供强悍的性能。在早前IMT-2020(5G)推进组组织的中国5G增强技术研发试验中,联发科更是成为首家基于3GPP十二月正式协议版本,通过SA独立组网、NSA非独立组网两种模式实验室测试的芯片厂商,并在内外场测试中分别实现167Gbps、140Gbps的 下载 速率。

至于AI方面,联发科推出的APU将会在其未来战略中扮演一个重要角色。这是联发科自研的一个AI处理单元,它将于CPU和GPU一起构成联发科的人工智能战略的重要动力来源。而NeuroPilot开发平台则将联发科硬件的AI功能发挥到淋漓尽致。

据了解,在这个平台中,开发者可以使用TensorFlow、TF Lite、Caffe、Caffe2 Amazon MXNet、Sony NNabla 或其他自订的协力厂商通用架构来构建应用程序;在API 级别,联发科提供的NeuroPilot SDK 也包括谷歌安卓神经网络API(Android NNAPI)和联发科本身的NeuroPilot 扩充元件,这就能让开发人员和设备制造商能以更加贴近硬件的方式编码以提高性能和省电效率。

值得一提的是,联发科的AI不仅仅会被应用智能手机, 汽车 、智能家庭和物联网产品线也将会是联发科AI的落脚点,它与5G产品一起将构成联发科未来的重要支柱。

物联网市场的三路进攻

虽然游人杰在大会上强调,物联网因为拥有少量多样,市场碎片化的特点,所以在处理这个市场的时候,不能像以前做DVD或者手机市场一样,单点市场突破就行了。这就带来了经营上的挑战。这和笔者从其他物联网厂商听到的观点不谋而合。

但即使如此,其实联发科早已经在这个市场取得了辉煌的战绩。例如早两年火爆全球的智能音箱,联发科在其中就拥有巨大的市场份额,国内无论小米、阿里巴巴或者百度,在他们的智能音箱上都与联发科建立了深厚的合作关系。

据游人杰介绍,联发科的智能语音位居全球第一,其他如安卓平板、功能手机、数字电视、网络连接等市场,联发科也是独占鳌头。

在问到关于物联网产品未来的发展战略的时候,游人杰表示,正因为物联网的上述特性,所以我们将采取推出多个系列平台的方案,让下游的合作伙伴基于这些平台打造不同形体的产品。“在今天的合作伙伴大会之前,我压根都不知道我们的产品可以做到那么多的形态产品中去”,游人杰补充说。而他所说的平台目前包括了i 30 0、i500和i700。

游人杰表示,联发科推出的i 30 0主要是面向带屏联网的设备,i500则是针对基于AI识别的需求,而最新推出的i700则是为了满足实时AI识别的应用。这些不同性能的产品能够帮助联发科拓宽不同应用的边界。

以最新推出的i700为例,据联发科方面介绍,新一代的 AIoT 解决方案i700 平台采用八核架构,集成了两个工作频率为 22GHz 的 ARM Cortex-A75 处理器与六个工作频率为 20GHz 的 Cortex-A55 处理器,同时搭载工作频率为 970MHz 的 IMG 9XM-HP8 图形处理器。此外, i700 平台还搭载了联发 科技 的 CorePilot 技术,确保八个核心能够以最高效的方式实现运算资源的最优配置,在提供最高性能的同时还能达到最低功耗,将高性能运算与电池寿命完美 结合 。

另外,联发 科技 i700 平台延续了强大的 AI 引擎能力,不仅内置双核 AI 专核,还加入了 AI 加速器(AI Accelerator),并搭载 AI 人脸检测引擎(AI face detection engine),让其 AI 算力较 AIoT 平台 i500 提升达 5 倍。同时支持联发 科技 NeuroPilot SDK,可以完全兼容谷歌的 Android Neural Networks API(Android NNAPI),提供完整的开发工具,让方案商及设备制造商充分利用 TensorFlow、TF Lite、Caffe 和 Caffe2 等业界常用框架,为创新应用程序提供了开放型平台。

按照游人杰的说法,随着边缘端AI需求的增加,基于应用处理器打造的物联网设备会逐渐蚕食MCU物联网市场,这也必将给联发科带来机会。为了进一步打造AIoT生态,联发科也携手产业链上下游,共同走进新时代。

智能家居不容忽视

在联发科的发展战略中,智能家居是他们一个重要的组成部分。今年年初,在完成了对晨星半导体的收购后,联发科对其组织架构做了重要的调整。把原来的两大事业群重新划分为无线产品事业群(手机)、智能设备和智能家居三大事业群。其中智能家居事业群则囊括了电视芯片、显示器芯片和时序控制器等产品。

按照联发 科技 副总经理暨智能家居事业群总经理张豫台在大会上的说法,智能家居催生了联网、安全和管理等各种需求,尤其是智能电视,会在整个智能家居中扮演一个非常重要的角色。

“例如现在智能安防在智能家居中的采用越来越高,但那么多的摄像头,如果用其他小屏幕去查看,会显得有点小,但智能电视的大屏幕将会能够完美解决这个问题”。张豫台指出。他进一步指出,人工智能在电视中的应用,让电视在智能家居中的地位进一步提升。届时的电视不但是家庭 娱乐 的中心,更是联动智能家居的核心终端。

作为全球最大的电视机芯片供应商,截至今年年初,联发科电视芯片累计出货量达 20 亿套,市占率也超过50%。这也让他们在发展智能家居的这个核心产品上拥有其他厂商所不具备的优势。

日前,联发科更是发布了旗舰级智能电视芯片S900,这个支持8K视频解码与高速边缘AI运算的芯片将会成为联发科智能家居战略中的一个重要构成,

据了解,S900芯片采用ARM Cortex-A73 CPU与Mali G52 GPU, 支持8K视频解码与HDR10+标准。在I/O端,S900芯片支持HDMI21A接口,频宽提升至48Gbps,支持HDR10+、4K 120Hz及8K 60Hz的视频输出。

此外,S900芯片还集成了联发科自研的AI处理器APU (AI Processor Unit),搭载新一代AI图像画质技术(AI PQ),支持人脸识别、场景检测等AI增强功能,可针对不同场景调校色彩饱和度、亮度、锐利度、动态向量补偿及智能降噪。

张豫台表示:“作为全球电视芯片的领军企业及电视厂商可靠的合作伙伴,联发 科技 凭借研发实力与技术创新, 非常自信能够通过资源整合推动电视产业的升级, 使用与Android NN接口完全兼容的NeuroPilot开发平台让客户轻易做到AI智能家居产品的互通互联。联发 科技 超清8K和AI人工智能技术不仅带领电视产业进入新的时代,更将推动智能家居产品的开发与落地,构建完善的AIoT生态圈。”

以上只是联发科未来规划的一部分。

根据联发科之前的公布,他们定下了包括工智能(AI)、车用电子(Auto)及ASIC在内的“了3A计划”,ASIC和AI业务在稳步推进,这是大家有目共睹的。就连车载电子方面,联发科也表现优越。在进驾驶辅助系统(Vision-based ADAS)、高精准度的毫米波雷达(Millimeter Wave)、车载信息 娱乐 系统(In-Vehicle Infotainment)和车载通讯(Telematics)四大核心领域发力的联发科初露锋芒。

消息显示,国内 汽车 大厂吉利日前正式发布的、全新升级的GKUI 19吉客智能生态系统就使用了吉利和联合联发科推出的车机芯片E系列芯片。这个引入了NPU神经网络计算单元的产品为吉利的系统提供了强悍的性能。

综上所属,从布局上看联发科已经卡住了每一个风口,成功以否就看他们接下来在市场上和竞争对手的搏杀表现了。

2018半导体行业资料合集 长期有效!

半导体行业观察

半导体第一垂直媒体

华为|晶圆|台积电|国外半导体|IC|AI|紫光|FPGA

回复 投稿 ,看《如何成为“半导体行业观察”的一员 》

回复 搜索 ,还能轻松找到其他你感兴趣的文章!

联发科在Computex发表一款主打物联网的WiFiSoCMT7687,这是一款基于192MHz/200MHz的Cortex-M4F核心并直接封装嵌入式SRAM/ROM与序列快闪记忆体的SoC晶片,提供包括1x1的WiFi80211b/g/n,同时针对各类IoT连接不同感测器与周边装置需求,提供包括UART、I2C、SPI、I2S、PWM、IrDA、以及能连结多样周边的类比转数位介面,另具备AES与3DES/SHA2协定的安全引擎达成资安需求。MT7687预计今年第三季开始向客户出货,目标市场包括智慧家电与各类智慧联网装置。

你或许会喜欢

宅宅攻略守则一:送超高C/P值又能让女生开心的小玩意~~

现折2000!最便宜的MacBookProRetina低家啦

以上就是关于名词解释:什么是信息技术全部的内容,包括:名词解释:什么是信息技术、边缘AI芯片市场火了,但大部分都是风投们点的、物联网走进千家万户,下一代超低功耗节点有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!