本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。
文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。
专题--农业传感器与物联网
Topic--Agricultural Sensor and Internet of Things
[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10
WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10
知网阅读
[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27
YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27
摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。
知网阅读
[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47
WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47
摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。
知网阅读
[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58
GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58
摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。
知网阅读
[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66
JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66
摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、操作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。
知网阅读
[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81
ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81
摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。
知网阅读
[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93
JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93
摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。
知网阅读
[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107
SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107
摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。
知网阅读
[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108
MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108
摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。
知网阅读
[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143
HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143
摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。
知网阅读
微信交流服务群
为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。
入群方法: 加我微信 331760296 , 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。
信息发布
科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广
二本物联网工程考研报滁州学院比较好。
数据截至2019年5月,滁州学院学科专业建设取得新成效。围绕地方支柱产业和战略新兴产业,通过新建、调整和改造,优化专业布局,培植应用型专业生长点,打造学科专业特色。学科专业转型被教育部评估中心推介为转型发展典型案例。
“单一师专升本院校应用型学科专业调整建设路径的探索与实践”获得安徽省教学成果一等奖。地理信息科学、物联网工程、食品质量与安全等3个应用型专业获批安徽省一流(品牌)专业。拥有省级产业创新团队1个、滁州市“221”产业创新团队3个,省级科技创新平台8个,获批设立院士工作站2个。
地理学获批安徽省“双一流”建设国内一流学科(B类)。获国家科技进步二等奖1项、省(部)级科技成果奖10项。1名教师入选“2014年中国高被引学者”名单。
私企
规模:
100-499人
行业:
新能源
全称:
金色大田科技有限公司
大田农社(>
智能农业涉及的范围还是很广的。就托普物联网建设的项目来看主要有这些:大田种植智能管理;畜牧水产养殖管理;食品安全溯源;温室大棚智能控制等等。如果光从定义来讲,智能农业可以这么理解:是指在相对可控的环境条件下,采用工业化生产,实现集约高效可持续发展的现代超前农业生产方式,就是农业先进设施与露地相配套、具有高度的技术规范和高效益的集约化规模经营的生产方式。它集科研、生产、加工、销售于一体,实现周年性、全天候、反季节的企业化规模生产;它集成现代生物技术、农业工程、农用新材料等学科,以现代化农业设施为依托,科技含量高,产品附加值高,土地产出率高和劳动生产率高,是我国农业新技术革命的跨世纪工程。
目前我国农业物联网在五个环节应用成效明显:一是在农业资源的精细监测和调度方面,利用卫星搭载高精度感知设备,获取土壤、墒情、水文等精细农业资源信息,配合农业资源调度专家系统,实现科学决策;二是在农业生态环境的监测和管理方面,利用传感器感知技术、信息融合传输技术和互联网技术,构建农业生态环境监测网络,实现对农业生态环境的自动监测;三是在农业生产过程的精细管理方面,应用于大田种植、设施农业、果园生产、畜禽水产养殖作业,实现生产过程的智能化控制和科学化管理,提高资源利用率和劳动生产率;四是在农产品质量溯源方面,通过对农产品生产、流通、销售过程的全程信息感知、传输、融合和处理,实现农产品“从农田到餐桌”的全程追溯,为农产品安全保驾护航;五是在农产品物流方面,利用条形码技术和射频识别技术实现产品信息的采集跟踪,有效提高农产品在仓储和货运中的效率,促进农产品电子商务发展。
国内开设物联网工程专业的学院不少,但是哪所最好呢下面就来给大家介绍一下物联网工程专业最好的大学有哪些,希望能够对你有所帮助!
1物联网工程专业好大学推荐:哈尔滨工业大学
哈尔滨工业大学隶属于工业和信息化部,是首批进入国家“211工程”和“985工程”建设的若干所大学之一。2000年,同根同源的哈尔滨工业大学、哈尔滨建筑大学合并组建新的哈尔滨工业大学。如今,学校已经发展成为一所以理工为主,理、工、管、文、经、法等多学科协调发展的国家重点大学。
2物联网工程专业好大学推荐:江南大学
江南大学是教育部直属、国家“211工程”重点建设高校。学校具有悠久的办学历史、厚重的文化积淀,源起1902年创建的三江师范学堂,历经国立中央大学、南京大学等发展时期;1958年南京工学院食品工业系整建制东迁无锡,建立无锡轻工业学院;1995年更名为无锡轻工大学;2001年无锡轻工大学、江南学院、无锡教育学院合并组建江南大学;2003年东华大学无锡校区并入江南大学。
3物联网工程专业好大学推荐:西北工业大学
西北工业大学坐落于古都西安,是一所以发展航空、航天、航海工程教育和科学研究为特色的多科性、研究型、开放式大学,是“985工程”、“211工程”重点建设学校,隶属于工业和信息化部。是“卓越大学联盟”成员高校之一。1952年中国人民解放军军事工程学院空军工程系在哈尔滨组建,1966年更名为哈尔滨工程学院航空工程系。
4物联网工程专业好大学推荐:重庆邮电大学
重庆邮电大学是国家布点设立并重点建设的几所邮电高校之一,是工业和信息化部与重庆市共建的一所以信息科学技术为特色和优势,在邮电通信行业、信息产业领域,在西部乃至全国具有重要地位和影响的教学研究型大学。近年来,学校抓住西部大开发、重庆大建设、信息产业大发展的历史机遇,立足行业,服务地方,加强建设,加快发展,2013年批准为博士学位授予单位。
5物联网工程专业好大学推荐: 吉林大学
吉林大学于2000年6月12日由原吉林大学、吉林工业大学、白求恩医科大学、长春科技大学、长春邮电学院合并组建而成。2004年8月29日,原中国人民解放军军需大学并入吉林大学。合并前的六所学校,都有着光荣的历史。原吉林大学的前身是始建于1946年的东北行政学院,1950年更名为东北人民大学,1952年经院系调整成为我党亲手创建的第一所综合性大学,1958年更名为吉林大学。
6物联网工程专业好大学推荐:中南大学
中南大学坐落在中国历史文化名城──湖南省长沙市,占地面积5886亩,建筑面积276万平方米。中南大学是教育部直属全国重点大学、国家“211工程”首批重点建设高校、国家“985工程”部省重点共建高水平大学和国家“2011计划”首批牵头高校。现任校党委书记高文兵、校长张尧学。
7物联网工程专业好大学推荐:华中科技大学
华中科技大学是国家教育部直属的全国重点大学,由原华中理工大学、同济医科大学、武汉城市建设学院于2000年5月26日合并成立,是首批列入国家“211工程”重点建设和国家“985工程”建设高校之一,学校校园占地7000余亩,被誉为“森林式大学”。
8物联网工程专业好大学推荐:西安理工大学
西安理工大学属中央和陕西省共建、以陕西省管理为主的高校。学校前身是北京机械学院和陕西工业大学于1972年合并组建的陕西机械学院。学校现有金花、曲江、莲湖3个校区和大学科技园,占地总面积1352万平方米。现设15个学院和1个教学部。学校设有23个本科实验教学中心,其中有3个国家实验教学示范中心,10个陕西省高等学校实验教学示范中心。
9物联网工程专业好大学推荐:河海大学
河海大学是一所有百年办学历史,以水利为特色,工科为主,多学科协调发展的教育部直属全国重点大学,是国家首批授权授予学士、硕士和博士学位,实施国家“211工程”重点建设、国家优势学科创新平台建设以及设立研究生院的高校,拥有水文水资源与水利工程科学国家重点实验室和水资源高效利用与工程安全国家工程研究中心。
文章首发:高考圈(>
农业物联网主要还是涉及大田的环境墒情监测、气候气象监测、温室大棚自动控制、种植业相关的智能控制系统、水产畜牧养殖自动控制系统、农产品安全溯源等等。
(1)在种植准备的阶段,在温室里面布置很多的传感器,分析实时的土壤信息,来选择合适的农作物。
(2)在种植和培育阶段,可以用物联网的技术手段采集温度、湿度的信息,进行高效的管理,从而应对环境的变化,保证植物育苗在最佳环境中生长。比如说通过采集设备,比如说降温了,可以在温室里加热。
(3)在农作物生长方面,可以利用物联网实时监测作物生长的环境信息、养分信息和作物病虫害情况。利用相关传感器准确、实时地获取土壤水分、环境温湿度、光照情况,通过实时的数据监测和物定作物的专家经验相结合,配合控制系统调理作物生长环境,改善作物营养状态,及时发现作物的病虫害爆发时期,维持作物最佳生长条件,对作物的行长管理有非常重要的作用。
(4)在农产品的收获阶段,同样可以利用物联网的信息,把传输阶段、使用阶段的各种性能进行采集,反馈到前端,从而在种植收获阶段进行更精准的测算。
(5)提高效率,节省人工,如果是几千亩的农场,要对各大棚进行浇水施肥,手工加温,手工卷帘,那要用大量的时间和人员来操作。如果应用了物联网技术,手动控制也只需点击鼠标的微小的动作,前后不过几秒,完全替代了人工操作的繁琐。
以上就是关于专题推荐 - 农业传感器与物联网专题全部的内容,包括:专题推荐 - 农业传感器与物联网专题、二本物联网工程考研推荐、大田农社是国企么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!