‎物联网‎中‎台有哪些

物联网0130

 ‎物联网‎中‎台有哪些,第1张

物联网设备是非标准计算设备,可无线连接到网络并具有传输数据的能力。物联网涉及将互联网连接范围从台式机,笔记本电脑,智能手机和平板电脑之类的标准设备扩展到任何范围的传统“哑”或未启用互联网的物理设备和日常物品。这些设备嵌入了技术,可以通过Internet进行通信和交互。它们也可以被 远程监视和控制。

连接的设备是生态系统的一部分,在该生态系统中,每个设备都与环境中的其他相关设备通信以自动执行家庭和行业任务。他们可以将可用的传感器数据传达 给用户,企业和其他预期的各方。这些设备可以分为三大类:消费类,企业类和工业类。

消费者连接的设备包括智能电视,智能扬声器,玩具,可穿戴设备和智能电器。例如,在 智能家居中,设备旨在感应和响应人的存在。当一个人回到家中时,他们的汽车与车库连通以打开门。进入室内后,温度调节器已经被调整到其首选温度,并且照明设置为较低的强度和颜色,因为他们的智能手表数据表明这是一个充满压力的日子。其他智能家居设备包括根据天气预报调整洒水量的洒水装置和了解最经常清洁房屋区域的机器人真空吸尘器。

企业物联网设备是旨在供企业使用的边缘设备。有各种各样的企业物联网设备可用。这些设备的功能各不相同,但往往倾向于维护设施或提高运营效率。一些选项包括智能锁,智能恒温器,智能照明和智能安全性。这些技术的消费者版本也存在。

在企业中,智能设备可以帮助举行会议。位于会议室中的智能传感器可以帮助员工确定和安排会议可用的房间,确保可以使用合适的房间类型,大小和功能。当与会人员进入会议室时,温度将根据占用情况进行调整,随着屏幕上适当的PowerPoint加载,灯光将变暗,并且演讲者开始演示。

消费者,企业和工业物联网设备的示例包括装配在会议室和装配线机器上的智能电视和智能传感器。

工业物联网设备旨在用于工厂或其他工业环境。大多数工业物联网设备是用于监视装配线或其他制造过程的传感器。来自各种类型传感器的数据将传输到监视应用程序,以确保关键流程处于最佳运行状态。这些相同的传感器还可以通过预测何时需要更换零件来防止意外停机。

如果发生问题,系统可能能够将通知发送给服务技术人员,以告知他们出了什么问题以及解决问题所需的部件。这样可以避免技术人员到现场诊断问题,然后再去仓库获取解决问题所需的零件。

物联网设备如何工作?

物联网设备在功能方面有所不同,但是物联网设备在工作方式上有一些相似之处。首先,物联网设备是旨在以某种方式与现实世界进行交互的物理对象。该设备可能是装配线上的传感器或智能监控摄像头。无论哪种情况,设备都可以感知物理世界中正在发生的事情。

该设备本身包括集成的CPU,网络适配器和固件,通常在开放源代码平台上构建。在大多数情况下,物联网设备连接到动态主机配置协议服务器,并获取该设备可用于在网络上运行的IP地址。某些物联网设备可通过公共互联网直接访问,但大多数设计为仅在专用网络上运行。

尽管不是绝对要求,但许多物联网设备是通过软件应用程序配置和管理的。但是,某些设备具有集成的Web服务器,因此不需要外部应用程序。

物联网设备配置并开始运行后,其大部分流量就出站了。例如,安全摄像头可传输视频数据。同样,工业传感器流式传输传感器数据。但是,某些物联网设备(例如智能灯)确实接受输入

数字化转型已成为众多企业十四五战略布局的新规划,随着云计算、大数据、人工智能和5G 等技术的共同作用下,企业数字化转型的速度得到前所未有的跨越式发展,在边际成本上也获得了压倒性的先发竞争优势,将对每个行业产生巨大的影响,数字化将成为数字经济进程中企业追逐的新目标。

数字化转型是企业追逐的新目标也是必经之路,甚至可以说“无数字化就会面临淘汰”。传统的信息化方式已经很难帮助企业应对极端条件下的企业发展,如这两年的疫情,给国家和企业造成的损失无可计量,对传统企业更是致命打击,也正是诸如此类的突发事件,类似加速器一样,带来了数字化的指数发展,加快了行业的数字化普及。

物联网是“新基建”的核心要素,也是数字化转型的关键节点。传统制造企业已不再是埋头造东西了,而是通过收集产品的各项使用指标、用户习惯等数据,优化产品,提升用户满意度。每个产品都可以通过不同的网络介质与云端通信,实现数据的高效、稳定传输。

所以说要实现数字化转型,物联网是必经之路。

物联网 归根结底还是一种以网络为介质将万物进行互联网的网络。只不过,这网络不再局限于以前的局域网,而是通过各种新的通信技术,如5G 。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递到云端 。

物联网初步分为三个层次,有物理层(也被称为感知层),网络层和应用层。

也称为感知层,主要是由各种的传感器元器件构成,如温、湿度传感器、高度传感器、方向传感器、R FID 标签和读写器等等。它本身是对外界各种信号的感知,类似人的五感,采集各种信息的来源,主要功能就是识别物体,采集信息。

负责传递和处理感知层获取的信息,由各种网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成。

负责物联网和用户(包括人、组织和其他系统)的人机接口,与各行各业的业务需要进行对接,实现物联网的智能应用。

物联网技术已经不再局限于某个企业或者行业,随着快速的发展,物联网已涉及到智慧安防、智慧能源、智慧家居、智慧城市等的建设。所以必须快速的形成自主的知识产权,掌握物联网的核心技术。

从企业层面而言,通过应用物联网可以最直观、最优先的获得终端用户使用产品的第一手数据, 有助于 企业高层在企业战略、营销、研发、运营等多板块的决策。

随着技术的不断更新发展 ,企业 最终 将会成为物联网解决方案的执行者, 深知物联网可以为企业带来的无限红利,如为企业在行业内的创新创造更多的机会,提高用户满意度、利用与用户的互动,可以提升用户粘性,提高资源利用率的同时节约总体成本。

从个人层面而言, 科技 改变生活,各种新技术的诞生都是为了满足人类的某种需求,物联网也不例外。通过物联网可以改变人们的学习习惯。如教育机构可以通过物联网获得学生的学习习惯数据,对学生薄弱的学习环节进行定向辅导。可以提前告知车主,某个商场最近的车位在哪、哪条路堵车等。可以告知妈妈们冰箱里是否还有菜还有什么菜等等的场景。

由于这些多方面的好处,使物联网 被 广泛 的 应用。不但有效地满足了企业的成本削减效率提高 的要求 , 还帮助企业 获得新的发展机会, 使人们的生活更加的便利,人更“懒”了。

物联网是各种感知技术、通信技术、云计算、大数据、人工智能等技术的集合体。在各行各业都得到了广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息也不尽相同。企业通过大数据的不同算法和模型分析信息,提取价值数据,可以有效的帮助企业高管进行关键决策。

物联网的核心是物与物,以及人与物之间的信息交互,物联网的发展将为国家、行业及企业带来前所未有的挑战。物联网的技术特征有以下几点:

RFID 本身是一种简单的无线系统,由询问器和应答器组成,具有唯一的编码,附在实体上。这样我们可以随时掌握物体的位置及周遭环境,对目标物体进行跟踪。

是一种以机器对机器进行智能交互为核心的、网络化的应用与服务,使对象实现智能化控制。基于云计算、大数据、人工智能等平台和互联网络,可以依据获取到的数据进行决策,改变对象的行为,从而进行控制和反馈。

主要是由微型的、不同功能的传感器、微执行器、信号处理器和控制电路等组成。负责信息收集、简单处理和执行。利用传感网可以可以提高系统的自动化能力、智能化能力。

物联网的属性特征可概括为感知、传送和处理。

位于物联网的物中,集成各种不同功能的传感装置,利用RFID、二维码、传感器等感知、获取,随时随地对物体进行信息采集。

位于物联网的联中,通过各种通信网络与互联网技术的融合,将目标物体(对象)接入信息网络,随时随地进行可靠的信息交互和共享。

利用云计算、大数据等新兴技术,对海量的跨区域、跨行业、跨组织的数据和信息进行分析处理,提升对物理世界各种活动和变化的洞察力,实现自动化且智能化的决策。

通过上文的介绍,想必大家已经对物联网有了一个轮廓的理解。物联网作为新一代的信息技术的高度集成的产物,被国家列为五大新兴战略性产业之一,对于以后发展有很大的影响,同时物联网已经在各行各业得到了不同程度的实际应用,为促进企业的数字化转型,发挥了重要的作用。

随着工业40的发展,越来越多的智能化工厂、数字化工厂在国内落地开花,遍布全国。借助物联网的热度和技术,实现从研发、制造、销售、物流到后市场等关键环节的全流程标准化、智能化。比如:

随着智能化 社会 的到来,智能建筑、智能家电、智能家居正在逐步走进我们的生活。智能家居是以家为平台,兼备建筑、自动化,智能化于一体的高效、舒适、安全、便利的家居环境,是物联网生活化的应用场景之一。物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。通过网络等信息通信技术手段实现对家居电器等的智能控制,使其能够按照人们的设定工作运行,而不论距离的远近。智能化与远程控制是智能家居的两大特点,这也是物联网的属性。

随着物联网的发展,智能家居可提供的场景不胜枚举,如通过手机可以远程控制家中的摄像头,查看家里情况,甚至可以通过摄像头和家人聊天;通过红外开关对家电进行远程控制,如提前打开电饭煲,实现下班到家马上有饭吃;通过智能门锁远程对门锁进行控制,掌控何人何时回家。利用物联网实现家居智能化,使生活更加舒适、便利和安全。

经历了计算机、互联网与移动通信网两次浪潮,物联网被称为信息产业第三次浪潮,代表了下一代信息发展技术。物联网是现代信息技术发展到一定阶段后出现的一种 综合 性应用与技术,将各种感知技术、现代网络技术和人工智能与自动化技术聚合与集成,使人与物智慧对话, 实现智慧的地球 。

物联网正在积极塑造工业生产和消费世界,从零售到医疗保健,从金融到物流,智能技术已遍及每个业务和消费者领域。随着国家的支持力度不断加码,物联网将得到前所未有的发展。毋庸置疑,物联网已经成为智慧的代名词,数字化转型的基础。

随着5G的商业化逐步落地,越来越多的领域加入了数字化转型之路,利用物联网技术实施智能化升级。特别是题主所列举的工业领域,就是谋求数字化转型的先锋。

特别是2020年新冠疫情爆发以来,由于供应链断裂和防疫管理不善所导致企业停工甚至是破产的例子不在少数。而对那些熬过艰难时刻的企业而言,想要在疫情常态化的背景下重塑核心竞争力,数字化转型成为了不可或缺的手段。

与传统的经营模式相比,实施数字化转型能够给企业带来巨大的价值,包括提高生产效率、减少人力成本、加速产品迭代、优化管理流程、加强制造自动化程度等等,真正起到降本增效的作用。此外,数字化程度的提高,也大大提高了企业在生产经营中各种风险的监测能力,避免造成相关损失。

当然,以上只是物联网对于某一个领域所创造的价值,同理,在面对智慧农业、智慧交通、智能家居等行业时,一样可以利用物联网技术来实现更智能和更便捷的功能,例如气候传感器和温湿度传感器可自行检测分析当前数据是否符合农作物生长需求,并联动灌溉或保温系统进行干预,确保作物最佳生长环境。(了解更多智慧人脸识别解决方案,欢迎咨询汉玛智慧)

不知道大家有没有细心发现,其实现在很多物联网的应用已经深入到我们生活各个部分。比如说共享单车,自助扫码骑行,骑完以后锁车付费走人,这个能很好地解决大家短途出行效率。还有就是应用在汽车上,专业术语叫车联网,现在很多10几万的车都具备远程监控的功能。比如说通过app远程启动车子,通过app查看车子的状态,当前在什么位置,还能根据你的行驶里程和机油寿命提醒你去保养等等。类似的例子还有很多,比如说智能家居产品,小家电产品。有些应用虽然感觉是鸡肋,这些都是他们跑马圈地的结果,先把市场占下来,再慢慢更新迭代产品。但不可否认的事,大家确实能感觉到物联网潜在的巨大价值,生怕自己错过一个亿。

从种种迹象也反映了物联网一定是个发展的趋势。总的来说,其实物联网可以和任何一个行业进行融合,让传统的产品更加智能高效。而我们汉玛智慧也在一直努力研发,争取为大家提供更多更优质的智慧解决方案,让我们的生活更加的便捷,让科技未来更指日可待!

1、物联网(The Internet of Things,简称IOT)是指通过 各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化 学、生物、位置等各种需要的信息。

2、组成:物联网的基本特征可概括为整体感知、可靠传输和智能处理 。

(1)整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。

(2)可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。

(3)智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。

扩展资料:

常见的运用案例有:

1、物联网传感器产品已率先在上海浦东国际机场防入侵系统中得到应用。机场防入侵系统铺设了3万多个传感节点,覆盖了地面、栅栏和低空探测,可以防止人员的翻越、偷渡、恐怖袭击等攻击性入侵。而就在不久之前,上海世博会也与无锡传感网中心签下订单,购买防入侵微纳传感网1500万元产品。

2、ZigBee路灯控制系统点亮济南园博园。ZigBee无线路灯照明节能环保技术的应用是此次园博园中的一大亮点。园区所有的功能性照明都采用了ZigBee无线技术达成的无线路灯控制。

3、智能交通系统(ITS)是利用现代信息技术为核心,利用先进的通讯、计算机、自动控制、传感器技术,实现对交通的实时控制与指挥管理。交通信息采集被认为是ITS的关键子系统,是发展ITS的基础,成为交通智能化的前提。无论是交通控制还是交通违章管理系统,都涉及交通动态信息的采集,交通动态信息采集也就成为交通智能化的首要任务。

参考资料来源:百度百科-物联网

IIoT是指工业物联网。广义上讲,它是指在交通、能源和工业部门的机械和车辆上应用仪器仪表、连接传感器和其他设备。就最普遍的观点,IIoT本质上是扩展到云的机器对机器(M2M)的支持。

而在实践中,一个IIoT系统可能就像一个智能捕鼠器一样简单,而另一个IIoT系统则可能像一个全自动的大规模生产线一样复杂,该生产线可以通过一个巨大的多层网络跟踪维护、生产、甚至订购和配送。

IIoT与其他IoT物联网应用程序的不同之处在于,它专注于连接石油和天然气、电力公用事业和医疗保健等行业中的机器和设备。

物联网包括消费者级别的设备,例如健身器材或者智能家电等,在出现问题时通常不会产生紧急情况的应用程序。

简而言之,IIoT面临更多风险,因为系统故障和停机会导致生命危险或高风险情况。

IIoT将计算机从IT引入到操作技术中,为仪器的开发提供了广阔的可能性,几乎为所有的工业运营带来了显着的效率和生产率的提升。

工业物联网联盟列出IIoT的这15个可能的用途:

1、智能工厂仓储应用

2、预测性和远程维护。

3、货运、商品和运输监控。

4、互联物流。

5、智能仪表和智能网格。

6、智能城市应用。

7、智能耕种和牲畜监控。

8、工业安全系统

9、能耗优化

10、工业供暖、通风和空调

11、制造设备监控。

12、资产跟踪和智能物流。

13、工业环境中的臭氧,气体和温度监控。

14、工人的安全和健康(条件)监控。

15、资产绩效管理

物联网在当今社会有着巨大的意义和作用,曾被誉为经济发展和国家安全的关键所在。下面是我精心推荐的物联网应用技术论文,希望你能有所感触!

物联网应用技术论文一:浅析物联网应用技术

摘 要近几年来物联网技术受到了人们的广泛关注。本文介绍了物联网技术的研究背景,传感网的原理、应用、技术,无锡是首个国家传感网信息中心。以最具代表性的基于RFID的物联网应用架构、基于传感网络的物联网应用架构、基于M2M的物联网应用架构为例,对物联网的网络体系与服务体系进行了阐述;分析了物联网研究中的关键技术,包括RFID技术、传感器网络与检测技术、智能技术和纳米技术;最后,展望了无锡物联网技术作为国家首个传感网信息中心对人类生活、工业发展、科技进步的促进作用。

关键词物联网;技术;应用

尽管物联网技术在国外以成熟,但国内物联网才刚刚起步,问题显然很明显。那就是物联网安全,物联网是一种虚拟网络与现实世界实时交互的新型系统,其无处不在的数据感知以无线为主的信息传输、智能化的信息处理,一方面固然有利于提高社会效率,另一方面也会引起大众对信息安全和隐私保护问题的关注。从技术上讲物联网存在很多网络安全隐患。由于物联网在很多场合都需要无线传输,这种暴露在公开场所之中的信号很容易被窃取,也更容易被干扰,这将直接影响到物联网体系的安全。物联网规模很大,与人类社会的联系十分紧密,一旦受到病毒攻击,很可能出现世界范围内的工厂停产、商店停业、交通瘫痪,让人类社会陷入一片混乱。

1物联网的定义

作为一个新兴产业,物联网从诞生到广泛应用需要经历四个阶段。第一阶段为设想阶段,是产业发展的最初时期;第二阶段是技术研发阶段;第三阶段为实验阶段。在技术研发的水平达到一定程度时,就可以进行小范围的试用和检测,这是从理论走向实践的一步。国内的研究也在同步前行,如中国移动、电信和联通三大电信运营商业开始尝试物联网业务。中国移动的手机钱包和手机购电业务,该业务也可以应用于超市、餐厅等小额支付场合;中国联通的无线环保检测平台通过3G网络,可实现对水表、灌溉、水文等动态数据进行检测,又可对空气质量、碳排放和噪音进行检测;第四阶段为全国推广阶段,也是投入资金最大的时期。同时,一旦大规模商用,大量基础设施的建设和终端产品的全面推广必将推动电信、信息存储处理、IT服务整体解决方案等众多市场的发展。

2物联网的发展趋势

业内专家认为,物联网一方面可以提高经济效益,大大节约成本;另一方面可以为全球经济的复苏提供技术动力。物联网的发展是以移动技术为代表的普适计算和泛在网络发展的结果,带动的不仅仅是技术进步,而是通过应用创新进一步带动经济社会形态、创新形态的变革,塑造了知识社会的流体特性,推动面向知识社会的下一代创新。开放创新、共同创新、大众创新、用户创新成为知识社会环境下的创新新特征,技术更加展现其以人为本的一面,以人为本的创新随着物联网技术的发展成为现实。要真正建立一个有效的物联网,有两个重要因素。一是规模性,只有具备了规模,才能使物品的智能发挥作用。二是流动性,物品通常都不是静止的,而是处于运动的状态,必须保持物品在运动状态,甚至高速运动状态下都能随时实现对话。

3物联网应用技术的隐私问题

在物联网中,射频识别技术是一个很重要的技术。在射频识别系统中,标签有可能预先被嵌入任何物品中,比如人们的日常生活物品中,但由于该物品(比如衣物)的拥有者,不一定能够觉察该物品预先已嵌入有电子标签以及自身可能不受控制地被扫描、定位和追踪,这势必会使个人的隐私问题受到侵犯。因此,如何确保标签物的拥有者个人隐私不受侵犯便成为射频识别技术以至物联网推广的关键问题。而且,这不仅仅是一个技术问题,还涉及到政治和法律问题。这个问题必须引起高度重视并从技术上和法律上予以解决。造成侵犯个人隐私问题的关键在于射频识别标签的基本功能:任意一个标签的标识(ID)或识别码都能在远程被任意的扫描,且标签自动地,不加区别地回应阅读器的指令并将其所存储的信息传输给阅读器。这一特性可用来追踪和定位某个特定用户或物品,从而获得相关的隐私信息。这就带来了如何确保嵌入有标签的物品的持有者个人隐私不受侵犯的问题。

4物联网应用的关键领域

41 RFID

射频识别即RFID(Radio Frequency Identification)技术,又称电子标签、无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。RFID是一种简单的无线系统,只有基本器件,该系统用于控制、检测和跟踪物体。系统由一个询问器(或阅读器)和很多应答器(或标签)组成。

42传感网

传感网是随机分布的集成有传感器、数据处理单元和通信单元的微小节点,通过自组织的方式构成的 无线网络 。借助于节点中内置的传感器测量周边环境中的热、红外、声纳、雷达和地震波信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大 小、速度和方向等物质现象。

43 M2M技术

M2M是Machine-to-Machine/Man的简称,是一种以机器终端智能交互为核心的、网络化的应用与服务。M2M根据其应用服务对象可以分为个人、家庭、行业三大类。通信 网络技术 的出现和发展,给社会生活面貌带来了极大的变化。人与人之间可以更加快捷地沟通,信息的交流更顺畅。但是目前仅仅是计算机和其他一些IT类设备具备这种通信和网络能力。众多的普通机器设备几乎不具备联网和通信能力,如家电、车辆、自动售货机、工厂设备等。M2M技术的目标就是使所有机器设备都具备连网和通信能力,其核心理念就是网络一切(Network Everything)。M2M技术具有非常重要的意义,有着广阔的市场和应用,推动着社会生产和生活方式新一轮的变革。M2M是一种理念,也是所有增强机器设备通信和网络能力的技术的总称。人与人之间的沟通很多也是通过机器实现的,例如通过手机、电话、电脑、传真机等机器设备之间的通信来实现人与人之间的沟通。另外一类技术是专为机器和机器建立通信而设计的。如许多智能化仪器仪表都带有RS-232接口和GPIB通信接口,增强了仪器与仪器之间,仪器与电脑之间的通信能力。目前,绝大多数的机器和传感器不具备本地或者远程的通信和连网能力。

44两化融合

两化融合是信息化和工业化的高层次的深度结合,是指以信息化带动工业化、以工业化促进信息化,走新型工业化道路;两化融合的核心就是信息化支撑,追求可持续发展模式。 在中国***第十六次全国代表大会上,江泽民同志率先提出了“以信息化带动工业化,以工业化促进信息化”的新型工业化道路的指导思想;经过5年的发展和完善,在中国***第十七次全国代表大会上胡锦涛同志继续完善了“发展现代产业体系,大力推进信息化与工业化融合”的新科学发展的观念,两化融合的概念就此形成。

5结语

根据物联网的内涵可知,要真正实现物联网需要感知、传输、控制及智能等多项技术。物联网的研究将带动整个产业链或者说推动产业链的共同发展。信息感知技术、网络通信技术、数据融合与智能技术、云计算等技术的研究与应用,将直接影响物联网的发展与应用,只有综合研究解决了这些关键技术问题,物联网才能得到快速推广,造福于人类社会,实现智慧地球的美好愿望。

参考文献

[1]刘化君物联网体系结构研究[J]中国新通信,2010,5

[2]陆光耀物流信息管理[M]北京:中国铁道出版社,2008

[3]肖慧彬物联网中企业信息交互中间件技术开发研究北京:北方工业大学,2009

点击下页还有更多>>>物联网应用技术论文

我国智能制造发展基础和支撑能力明显增强

我国智能制造发展迅速、发展战略清晰。2016年12月8日,我国工业和信息化部、财政部联合制定的《智能制造发展规划(2016–2020年)》(以下简称《规划》)颁布。根据《规划》,2025年前,我国推进智能制造发展实施“两步走”战略。第一步,到2020年,智能制造发展基础和支撑能力明显增强,传统制造业重点领域基本实现数字化制造,有条件、有基础的重点产业智能转型取得明显进展;第二步,到2025年,智能制造支撑体系基本建立,重点产业初步实现智能转型。

《规划》要求到2020年实现四个具体目标:

目标一:智能制造技术与装备实现突破。研发一批智能制造关键技术装备,具备较强的竞争力,国内市场满足率超过50%。突破一批智能制造关键共性技术。核心支撑软件国内市场满足率超过30%。

目标二:发展基础明显增强。智能制造标准体系基本完善,制(修)订智能制造标准200项以上,面向制造业的工业互联网及信息安全保障系统初步建立。

目标三:智能制造生态体系初步形成。培育40个以上主营业务收入超过10亿元、具有较强竞争力的系统解决方案供应商,智能制造人才队伍基本建立。

目标四:重点领域发展成效显著。制造业重点领域企业数字化研发设计工具普及率超过70%,关键工序数控化率超过50%,数字化车间/智能工厂普及率超过20%,运营成本、产品研制周期和产品不良品率大幅度降低。

宏观地看,制造业是数字经济的主战场。近年来,制造企业数字化基础能力稳步提升,制造业企业设备数字化率和数字化设备联网率持续提升。根据前瞻产业研究院《高质量发展新动能:2020年中国数字经济发展报告》的数据,2019年,规模以上工业企业的生产设备数字化率、关键工序数控化率、数字化设备联网率分别达到471%、495%、410%,工业企业数字化研发设计工具普及率达到693%。数字化率指标直接反映了我国智能制造转型升级的进展速度。

我国已经形成系列先进制造业产业集群。根据赛迪研究院对我国先进制造业集群空间分布的研究成果,我国已形成以“一带三核两支撑”为特征的先进制造业集群空间分布总体格局。环渤海核心地区主要包括北京、天津、河北、辽宁和山东等省市,是国内重要的先进制造业研发、设计和制造基地。其中,北京以先进制造业高科技研发为主,天津以航天航空业为主,山东以智能制造装备和海洋工程装备为主,辽宁则以智能制造和轨道交通为主。长三角核心地区以上海为中心,江苏、浙江为两翼,主要在航空制造、海洋工程、智能制造装备领域较突出,形成较完整的研发、设计和制造产业链。珠三角核心地区的先进制造业主要集中在广州、深圳、珠海和江门等地,集群以特种船、轨道交通、航空制造、数控系统技术及机器人为主。中部支撑地区主要由湖南、山西、江西和湖北组成,其航空装备与轨道交通装备产业实力较为突出。西部支撑地区以川陕为中心,主要由陕西、四川和重庆组成,轨道交通和航空航天产业形成了一定规模的产业集群。

中国制造业主要领域发展情况:

以工业互联网、工业机器人、高端数控机床和半导体产业为例

(1)新一代信息技术与智能制造的结合:工业互联网发展迅速

工业互联网发展迅速。新一代信息技术与制造业的深度融合发展,是推动制造业升级的重要引擎。其中,工业互联网又是这个融合过程中的核心。工业互联网与我国智能制造发展正相关。2018年、2019年我国工业互联网产业经济增加值规模分别为142万亿元、213万亿元,同比实际增长分别为557%、473%,占GDP比重分别为15%、22%,对经济增长的贡献分别为67%、99%。2018年、2019年我国工业互联网带动全社会新增就业岗位分别为135万个、206万个。从这个数据来看,中国工业互联网的发展已经形成全新的动能。

工业互联网发展存在三大痛点。我国工业互联网仍处于发展初期,标准架构还在探索之中,商业模式尚不成熟,技术、人才、安全等方面存在瓶颈和短板,推广应用的艰巨性和复杂性并存,需要保持耐心、稳中求进。具体而言,存在三大问题:

一是数据流动与融合问题。主要体现在三个方面。首先,是设备互联互通信息孤岛问题。例如,一条生产线涉及大量不同的设备底层通信和数据交互协议等,要实现设备之间有效的数据流动和融合,难度较大。其次,在目前的人工智能发展阶段,对依托工业生产所产生的大数据进行智能化自动决策依然是有难度的。最后,工业互联网设备的专用软件难以通用也是当前工业互联网发展的一个较大瓶颈。

二是对成本和安全问题考虑不足。一方面,存在成本问题。例如,工业互联网安全涉及专业人员、数据中心、云计算等方面的成本。另一方面,存在安全挑战。例如,工业互联网的数据泄露和网络攻击风险等。

三是工业互联网的盈利模式依然需要摸索。工业互联网行业标准多,涉及各个制造业的垂直领域,专业化程度高,难以找到通用的盈利和发展模式。

2020年6月30日召开的中央全面深化改革委员会第十四次会议就工业互联网发展提出了明确要求。会议强调,加快推进新一代信息技术和制造业融合发展,要顺应新一轮科技革命和产业变革趋势,以供给侧结构性改革为主线,以智能制造为主攻方向,加快工业互联网创新发展,加快制造业生产方式和企业形态根本性变革,夯实融合发展的基础支撑,健全法律法规,提升制造业数字化、网络化、智能化发展水平。由此看来,从2020年开始,在未来一段时期内,工业互联网会是智能制造最为关键的国家战略。

(2)我国工业机器人发展迅速

政策方面,我国对工业机器人的支持具有长期性和持续性。1959年,美国人乔治·德沃尔与约翰·英格伯格联手制造出第一台工业机器人,标志着机器人技术进入制造业。我国在1972年开始工业机器人研究,与美国相差仅约10年。1982年,中国科学院沈阳自动化研究所研制出我国第一台工业机器人。20世纪80年代,我国工业机器人发展主要涉及喷涂、焊接等工业流水线上机械手的研发。“863计划”启动后,我国开始大力支持工业机器人技术发展。“十五”规划(2001~2005年)期间,我国开始发展危险任务机器人、反恐军械处理机器人、类人机器人和仿生机器人等。“十一五”规划(2006~2010年)期间,开始重点关注智能控制和人机交互的关键技术。到“十二五”规划(2011~2015年),“智能制造”开始正式全面提上国家战略。2016年,《机器人产业发展规划(2016-2020年)》发布,开始进一步完善机器人产业体系,扩大产业规模,增强技术创新能力,提升核心零部件生产能力,提升应用集成能力。

技术方面,我国机器人技术发展迅速,但工业机器人关键零部件国产化率依然有很大的上升空间。2011年至2020年,国内机器人技术相关的专利数量快速增加,年平均申请量为170092件,年平均增长率为3953%,最高年增长率为7967%(2016年),2018年的年度申请量最高,申请数量为37853件。我国机器人专利数量的快速增长,说明了2011年以来我国机器人技术的快速发展。但我国工业机器人关键零部件技术国产化率依然较低,制约着我国工业机器人产业的发展。根据头豹研究院的数据,我国工业机器人机械本体国产化率为30%、减速器国产化率为10%、控制器国产化率为13%、伺服系统国产化率为15%;而在我国工业机器人生产成本结构中,伺服系统、控制器与减速器这三大核心零部件的成本占比超过了70%。核心零部件因为技术壁垒高,国产化程度低,主要依赖进口,因而成本占比较高。例如,中国工业机器人制造企业在采购减速器时,由于采购数量较少,难以产生规模效应,面临国际供应商议价权过高问题,相同型号的减速器,中国企业采购价格是国际知名企业的两倍。

需求方面,国家政策的支持和智能制造加速升级,使工业机器人市场规模持续迅速增长。根据2019年8月中国电子学会发布的《中国机器人产业发展报告2019》,我国生产制造智能化改造升级的需求日益凸显,工业机器人需求依然旺盛,我国工业机器人市场保持向好发展,约占全球市场份额三分之一,是全球第一大工业机器人应用市场。另外,根据国际机器人联盟(IFR)统计,我国工业机器人密度在2017年达到97台/万人,超过全球平均水平,并将在2021年突破130台/万人,达到发达国家平均水平。如图1所示,从长期来看,制造企业对工业机器人仍有巨大需求,机器人价格下行的态势也将延续。在“量增价降”综合因素作用下,工业机器人本体销售额平稳增长,预计到2023年将达2658亿元。此外,随着部分西方国家对华扼制战略的推进,我国工业机器人在快速发展的同时,也在加快工业机器人伺服电机、减速器、控制器等关键部件的国产替代。工业机器人核心部件国产化,也将成为未来发展的重要趋势。

销售方面,从我国工业机器人销售情况看,我国工业机器人国产替代在加速,国际市场竞争力在加强。一是我国国产工业机器人销量逐步增长,国产替代加速。根据前瞻产业研究院的研究报告,随着我国机器人领域的快速发展,我国自主品牌工业机器人市场份额也在逐步提升,与外资品牌机器人的差距在逐步缩小。例如,2019年,自主品牌工业机器人在市场总销量中的比重为3125%,比2018年提高337个百分点。另据民生证券研究的研究报告,“2011~2020年,国内工业机器人销量复合增速达251%;其中国产工业机器人销量由约800台增加至约5万台,复合年均增长率达583%,高于国内整体销量增速约33个百分点;同期国产工业机器人市场渗透率上升约26个百分点。”二是国内工业机器人出口增长迅速,国际市场份额在提升。2015~2020年,我国国内工业机器人出口量由2015年的12万台提升至2020年的81万台,复合年均增长率达465%;出口量在全球占比由46%提升至204%,增长约16个百分点。

(3)高端数控机床依然是我国的短板

高端数控机床与我国工业机器人的发展密切相关,但目前我国高端数控机床发展依然相对落后,这也是制约我国智能制造业发展的重要短板。有数据显示,2019年全球排名前10的数控机床企业中,来自日本的山崎马扎克公司以528亿美元的营收排名第一,德国通快公司以424亿美元排名第二,德日合资公司德玛吉森精机以382亿美元排名第三,其后分别为马格、天田、大隈、牧野、格劳博、哈斯、埃玛克,这10家高端机床企业没有一家是中国的。

我国对进口机床有着较大的需求。根据海关总署披露的数据,2015年至2019年,我国进口的数控机床合计达29914台,进口总额达978亿元。此外,我国高端机床及核心零部件仍依赖进口,截至2021年,国产高端数控机床系统市场占有率不足30%。国产精密机床加工精度目前仅能达到亚微米,与国际先进水平相差1~2个数量级。因此,在供需矛盾之下,我国高端机床的自主化、国产替代任务依然艰巨。

具体而言,我国高端数控机床主要存在四个方面的问题。一是高端机床的精密数控系统主要来源于日本、德国,国产数控系统主要应用于中低端机床,国产高端机床精密数控系统自主供给依然缺乏;二是主轴主要来源于德国、瑞士、英国等国,国产企业已具备一定生产能力,但技术仍需迭代提升;三是丝杠主要来源于日本,国内相关技术较多,但技术水平有待提升;四是刀具主要来源于瑞典、美国、日本等国,国产刀具材料落后,寿命和稳定性不高,平均寿命只有国际先进水平的1/3~1/2。

(4)半导体发展进展

半导体市场需求占全球第一,但国内供给能力有限。我国半导体行业发展非常迅速,影响力也越来越大。根据Statista全球统计数据库的数据,截至2012年,我国半导体市场需求份额首次过半——占全球半导体总需求的525%。根据赛迪顾问2021年6月1日公布的《2021全球半导体市场发展趋势白皮书》的数据:“从区域结构来看,中国已经连续多年成为全球最大的半导体消费市场。2020年,中国市场占比最高达到344%。美国、欧洲、日本和其他市场的市场份额分别为217%、85%、83%和271%。”

但是,同时我国半导体自给自足能力严重不足。根据中国半导体行业协会(CSIA)公布的可查数据,2016年中国集成电路进口额度达2271亿美元,而同年我国石油进口原油38101万吨,金额为116469亿美元,集成电路进口额远超石油进口额。中国半导体生产一直不能满足国内半导体消费需求。根据法资知名市场调查公司博圣轩(Daxue Consulting)2020年10月的数据,“自2005年以来,中国一直是半导体的最大市场。然而,在2018年,中国的半导体消费总量中,只有略多于15%是由中国的生产提供的”。根据彭博社的数据,2020年中国芯片的进口额攀升至近3800亿美元,约占我国国内进口总额的18%。到2021年上半年,国内半导体领域的供应缺口依然未缩小。根据海关总署的数据,2021年1月至5月,我国进口集成电路26035亿个,同比增加30%。由此看来,截至2021年上半年,国内半导体供给能力依然有限。

我国部分半导体产业领域已具备国际竞争力,但缺乏高端芯片生产能力。半导体产业的整个生产制造过程可以分为三个部分:分布式设计、制造和封测。2021年3月1日,国新办举行工业和信息化发展情况新闻发布会。工业和信息化部党组成员、总工程师、新闻发言人田玉龙在回答记者提问时介绍:“‘十三五’中国集成电路产业发展总体是非常骄人的,产业规模不断增长。据测算,2020年我国集成电路销售收入达8848亿元,平均增长率达20%,为同期全球集成电路产业增速的3倍。技术创新上也不断取得突破,制造工艺、封装技术、关键设备材料都有明显大幅提升。”

在半导体产业制造领域,国产自主创新替代在全面加速。根据国盛证券2020年6月的报告,我国国内半导体制造已基本完成从无到有的建设工作。例如,中微公司介质刻蚀机已经打入5nm制程;北方华创硅刻蚀进入SMIC28nm生产线量产;屹唐半导体(Mattson)在去胶设备市场的占有率居全球第二;盛美半导体单片清洗机在海力士、长存、SMIC等产线量产;沈阳拓荆PECVD打入SMIC、华力微28nm生产线量产;2018年ALD通过客户14nm工艺验证;精测电子、上海睿励在测量领域突破国外垄断等。但总体来看,目前我国缺乏7nm及以下的高端芯片的稳定、规模化生产能力,华为当前遇到的困境也很大程度上根源于此,我国距离实现高端芯片的量产还有很长的路要走。

我国晶圆生产能力发展迅速,已形成相对完整的半导体产业链,但产业结构失衡。我国在半导体生产材料——晶圆制造方面取得长足进步。截至2020年12月,中国大陆晶圆产能占全球晶圆产能153%的份额,已超越北美(北美占全球晶圆产能的126%),成为全球第四大晶圆制造地区(第一名为中国台湾,占214%;第二名为韩国,占204%;第三名为日本,占158%)。

半导体材料制造的快速发展,对我国整个半导体产业链的提升有非常重要的作用。例如,海思半导体是我国IC设计企业龙头,2016年销售额达260亿,是国内最大的无晶圆厂芯片设计公司。海思半导体的业务包括消费电子、通信、光器件等领域的芯片及解决方案,代表产品为麒麟系列处理器等。2020年10月22日,华为在HUAWEI Mate 40系列全球线上发布会上发布的麒麟9000芯片,采用了5nm工艺制程。据报道,麒麟9000在多个参数上超越骁龙865、苹果A14等竞争对手。但是,麒麟的加工生产仍然需要海外公司代工,因此麒麟芯片的供应会受到“美国的芯片禁令”等国际因素的影响。我国在半导体产业结构上还存在发展

均衡的问题,难以完全自给自足。

当前,全球半导体产业链细分趋势非常明显。较诸之前设计、制造和封测在同一公司完成的IDM模式,这三个环节已经形成相对独立的专业企业分工。全球半导体产业链走向分工的过程也是半导体产业链全球化的过程。以1996年为分水岭。在此之前,中国半导体产业受制于国际和国内政治因素,与全球半导体产业发展的“摩尔定律”速度完全脱节。但在1996年之后,通过“908”“909”工程等系列战略推动,加上进入21世纪以来全产业链的系列配套发展,我国半导体产业体系已经取得了长足进步,当前中国已跃升为晶圆代工产业全球第二大国。从中国半导体产业技术发展进程看,中国半导体制造工艺从落后3代以上,缩小为仅落后1~2代。

同时,我们也要看到,在芯片制造环节,虽然有“908”“909”工程以及最近十余年来国家的大力推动,但中国集成电路产业的落后依然不容置疑。必须承认,整体的产业结构严重失衡,设计企业少而弱,制造方面虽有半导体巨头纷纷设厂,但以封装测试为主,而且由于国外政策的限制,制造工艺均落后于国外。至于制造设备,几乎完全依赖进口。这些问题我们依然要面对,而且还需要深入分析和挖掘原因。

04 我国智能制造发展面临的问题及对策建议

智能制造业人才紧缺,需加快培养相关人才。我国智能制造面临人才缺口大、培养机制跟不上、现有制造业人员适应智能制造要求的转型难度较大等问题。

一是整体人才缺口大。我国教育部、人力资源和社会保障部、工业和信息化部联合发布的《制造业人才发展规划指南》预测,到2025年,高档数控机床和机器人有关领域人才缺口将达450万,人才需求量也必定会在智能制造不断深化中变得更大。

二是人员流动性大,且刘易斯拐点后人口红利在缩小。不仅是人才缺口大,制造业人员流动性也很大。根据中金公司的调研,在跨过刘易斯拐点后,制造业劳动力市场中需求方的议价能力下降。例如,有纺织企业反映2012年以来企业在国内就面临基层员工招不进来、大专生留不下来的情况;另外,有些汽车配件企业希望可以留住熟练工人,但新冠肺炎疫情发生后,部分四川、重庆的工人可能选择不再回来,过去几年的产业内迁也使很多中西部劳动力选择就近就业。

三是智能制造转型升级创造的新职位需要新型技术人才,但传统就业人员并不一定能在短期内转型并适应新职位需求。以工业互联网为例,中国工业互联网研究院的研究表明,工业互联网相关职业在不断涌现。2019年、2020年国家发布的29个新职业中,与工业互联网相关的达到13个,如大数据工程技术人员、云计算工程技术人员,占新增职业的448%。要胜任这些新职位需要较高、较新的知识储备,原有传统制造业领域的工程技术人员要满足这些新岗位的技能需求,需要时间培养。

以上都是智能产业结构升级过程中难以避免的问题。要解决这些问题,可从两方面着手。一方面,建立更为健全的在职教育体系、提供在职教育的认可度和含金量。制造业是就业的重要领域,相关人员的转型升级是迈向智能制造的前提。在人才缺口较大的情况下,在职人员“干中学(Learning by doing)”是制造业智能化人才培养比较务实的路径。同时,用人单位也要抛弃对在职学习的成见和歧视,避免“唯学历论”,要根据制造业实际需求和个人能力来选用人才。

另一方面,制造业人才使用面临“Z世代”挑战。“Z世代”是美国及欧洲的流行用语,意指1995~2009年间出生的人,又称网络世代、互联网世代,统指受互联网、即时通信、短信、MP3、智能手机和平板电脑等科技产物影响很大的一代人。面对时代变化,制造业传统的用人管人方式需要转变,使年轻一代能够留得下来、干得下去,能够越干越有希望。

工业互联网的安全问题需引起高度重视,进一步细化明确责任体系。工业互联网作为智能制造的“血脉”,其安全性直接关系到智能制造的安全。工业互联网和制造系统具有高度集成的特征,而这些集成使智能制造系统更容易受到网络威胁的攻击。2019年7月,工业和信息化部等十部门联合印发了《加强工业互联网安全工作的指导意见》(以下简称《指导意见》),提出了两大总体目标:一是到2020年年底,工业互联网安全保障体系初步建立;二是到2025年,制度机制健全完善,技术手段能力显著提升,安全产业形成规模,基本建立起较为完备可靠的工业互联网安全保障体系。

当前,我国工业互联网面临的威胁较为严峻。2020年1月至6月,国家工业互联网安全态势感知与风险预警平台持续对136个主要互联网平台、10万多家工业企业、900多万台联网设备安全监测,累计监测发现恶意网络行为13563万次、涉及2039家企业。有数据显示,截至2020年6月,我国工业互联网虽然总体安全态势平稳,未发现重大工业互联网安全问题,但对工业互联网基础性设备和系统的攻击正在增多,攻击范围、深度都在扩张,未来工业互联网面临严峻安全挑战。

工业互联网安全问题难以避免地会随着智能制造升级发展而不断变化,因此相关的防范体制机制是关键所在。《指导意见》特别强调,到2020年年底,“制度机制方面,建立监督检查、信息共享和通报、应急处置等工业互联网安全管理制度,构建企业安全主体责任制,制定设备、平台、数据等至少20项亟需的工业互联网安全标准,探索构建工业互联网安全评估体系”。由此可见,工业和信息化部等我国相关主管部门对工业互联网安全问题的复杂性和多部门协同联防联控的重要性有充分认识。而细化工业互联网各领域、各环节的责任体系,是多部门合作防控的首要问题。因此,在加强相关标准建设的同时,也要进一步细化相关安全体系的职责,需要将防范工作落实到具体的主管部门。

半导体、高端数控机床、工业机器人核心零部件等的国产替代需要我国提高自主创新能力,建议进一步深化科研体制改革、加强科研机构与产业界的联动,通过提高国家系统自主创新能力来推动关键领域的技术瓶颈突破。半导体、高端数控机床、工业机器人核心零部件这些领域在技术路径上是密切相关的。例如,这三个领域在传感器、控制系统、各种智能芯片模块方面均有相似或共同的技术栈。我国要提高这些领域的国产替代率,不是依靠个别技术突破能够实现的。半导体、高端数控机床、工业机器人核心零部件的国产替代突破需要依托国家系统创新能力的提升,这将是一个长期的过程。在国家层面,目前这几大领域主要依靠相关部委和地方产业政策支持,但缺乏中央的统一战略。建议立足于国家整体系统创新能力的提高,从中央层面明确具体的责任人,统筹半导体、高端数控机床、工业机器人核心零部件等领域自主创新问题。通过中央层次的统筹,在不断改革中建立与解决当前半导体、高端数控机床、工业机器人核心零部件“卡脖子”问题相适应的国家系统自主创新机制,建立制度化的创新突破能力,推动我国智能制造迈上新的台阶。

加快智能制造升级发展,需进一步激活民营企业活力,完善相关市场竞争和退出机制。一方面,未来我国企业的智能制造转型升级,在国企做大做强的同时,民营制造业发展的动能不容忽视。2018年以来,我国对于行政性政策对民营企业的影响问题已有较深入的认知,特别是政策刚性对民营企业生命力的影响问题,需要长期警醒。此外,我国智能制造同时也要为“小微民营企业”预留发展空间,引导和促进小微企业形成或者融入产业链。

另一方面,我国大部分制造业领域已经不是幼稚产业,保护与竞争、政策支持和市场退出机制等需要并行推进。以半导体产业为例,我国半导体芯片需求当前已经占据全球第一,除了芯片制造还与国际发展存在较大差距,我国在晶圆材料生产、封测和电子产品制造方面的全球竞争中已经具备较强的竞争力。结合美国的半导体产业经验,在行业发展早期是需要产业政策扶持的,但是随着产业自身发展的不断成熟,要逐步从产业政策推进向产业政策与贸易政策相结合的方式过渡,适当引进竞争机制,淘汰落后产能,为有竞争力的企业提供更好的创新空间。因此,我国半导体行业最终仍需面对与美国等发达国家在全球的较量,长期的竞争与较量将是常态。

1 GE

Predix是第一个被认为是世界上最大的工业互联网平台,但推广不尽人意。

2西门子

2019年西门子一直在推动其MindSphere,在国内进行了多次的产品推广会,希望超越GE Digital的Predix。西门子是一家庞大的跨国公司,只需将其自己的设备连接到MindSphere,即可使其成为世界上最大的IIoT网络。

3施耐德电气(WonderWare)

施耐德电气主要提供能源管理系统和工业自动化解决方案,两者都非常适合IIoT网络。借助像施耐德电气的WonderWare这样的IIoT网络,可以对所有电机和机器人以及诸如此类的东西进行集中监控和管理。未来,只有一个人坐在控制室中的计算机上,可以直接访问故障机器并查看传感器参数,并且机器知道如何解决。

4 SAP

以上就是关于 ‎物联网‎中‎台有哪些全部的内容,包括: ‎物联网‎中‎台有哪些、一文带你读懂物联网、工业物联网可以实现哪些功能等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!