工业互联网平台的爆发增长态势

物联网094

工业互联网平台的爆发增长态势,第1张

1、全球工业互联网雏形形成

全球工业互联网发可分为4个阶段;第一阶段是在60-80年代,实现了网络的发明以及机器和机器之间的互联;第二阶段是在90年代,实现了工业网络协议以及操作系统的发布,以及物联网的提出并且工业设备逐渐联网;第三阶段是在2000年初,云计算以及通信独立架构协议的形成,并且工业互联网支撑体系逐步形成;第四阶段是2010年到至今,工业互联网雏形的形成和发展。

2、全球工业互联网规模增速有所放缓

美国、欧洲、亚太地区是工业互联网发展的重点区域。其中美国集团优势显著,GE、微软、罗克韦尔、亚马逊等巨头积极布局,加之各类初创企业着力前沿创新,有望助力美国保持行业主导地位。而欧洲工业巨头如西门子、博世、ABB、SAP等凭借自身在制造业的基础优势亦进展迅速。2018年全球工业互联网市场规模为80591亿美元,较2017年增长551%。2019年全球工业互联网市场规模约为84656亿美元。由于2020年疫情影响,全球工业互联网增速有所放缓,初步统计达到8972亿美元。2022年预计首次突破1万亿美元。

注:截止2022年2月,2020年全球工业互联网市场规模暂未公布,图中2020年数据为初步统计值,后续以官方发布为准。

3、工业互联网经济效益显著

根据通用电气发布的《工业互联网:打破智慧与机器的边界》,假设所有的工业系统能够有1%的效率提升,就会带来显著的经济效益。在未来15年内,航空业减少1%的燃料,将节约超过300亿美元;医疗行业效率提高1%,会节约630亿美元;电力效率提升1%,将节约660亿美元;石油天然气资本支出降低1%,将节约900亿美元。

4、全球工业互联网区域市场:美、中、日、德共同引领全球工业互联网发展

根据《中国工业互联网产业经济发展白皮书》数据显示,2020年,美国在规模上仍占据世界市场主要份额,达2368%,中国工业互联网排名第二,占比达1514%。随后是日本与德国,占比分别为817%和662%。总体来看,美、中、日、德四国占比综合超过50%,共同引领全球工业互联网发展。

5、全球工业互联网发展趋势:基于全光连接的工业PON技术最具成长性

2021年10月18日2021全球工业互联网大会召开,期间发布的《全球工业互联网十大最具成长性技术展望(2021-2022年)》,展望了全球工业互联网未来的技术发展趋势。其中,基于全光连接的工业PON技术成为近年来全球工业互联网最具成长性的技术。

在全球新一轮科技革命和产业变革中,信息技术与各行业各领域的融合发展具有广阔前景和无限潜力,已成为不可阻挡的时代潮流,各国纷纷加大对工业互联网的投入布局,都期望通过技术革命减少对人的依赖,更好发挥人的价值,实现各自国家向高质量、高效率、绿色高端方向发展。故未来全球工业互联网将在较长时间内将保持高速增长态势。

—— 更多行业相关数据请参考前瞻产业研究院《中国工业互联网产业发展前景预测与投资战略规划分析报告》

刚刚过去的2014年,在我国制造业面临转型升级的背景下,业界对于工业40的讨论不绝于耳,再加上西门子、SAP等德国工业40的重要参与者推波助澜,一时间仿佛中国的工业40时代马上就要到来。然而,相比工业40示范工厂生产线上只有屈指可数的几个工人,我国很多工厂却还在采用半自动化的生产方式。那么,我们到底要用怎样的心态来对待工业40

在2014年10月第三轮中德政府磋商后发表的《中德合作行动纲要:共塑创新》中,工业40是其中一个合作内容。这一纲要的发布,进一步引发了国内业界对于工业40新一轮的热议。

工业发展的选择

工业40是德国政府提出的愿景,以保持德国制造业的全球领先地位。工业40描绘了制造业的未来愿景,提出继蒸汽机应用、规模化生产和电子信息技术应用等三次工业革命后,人类将迎来以信息物理系统(CPS)为基础,以生产高度数字化、网络化、机器自组织为标志的第四次工业革命。

工业40之所以在我国引起广泛关注,是因为在人工成本上升、原材料价格波动、信息技术对产业影响不断深入等的背景下,我国制造业正面临转型。而且工业40的很多理念,与我国提出的“两化”融合战略不谋而合。

“工业40是行业大趋势,可能也是工业发展的惟一选择。”SAP全球高级副总裁、全球研发网络和快速增长战略市场总裁柯曼认为,“中国不仅是工业40或物联网发展的受益者,更是重要的推动者。”这一方面是因为中国本身是个工业大国,正处在工业转型升级的关键时刻,而工业40有助于中国工业提高效率、降低生产成本、提高生产的灵活性以满足消费者的个性化需求;另一方面,是因为中国拥有大量高科技公司,以及潜力巨大的移动互联网和电子商务产业,为工业40的落地提供了技术基础。

SAP大中华区总裁纪秉盟认为,仅仅解放生产力还远远不够,工业40要解决中国制造业面临的更深层次的问题。中国制造企业的角色将逐渐向服务提供商转变,不仅出售设备,还需提供包括维保在内的全套服务。因此,服务创新将是制造企业的下一个战略高地。而工业40并不局限于生产线,它还与物联网技术紧密联系,为中国制造企业攀登战略高地创造全新机遇。

据了解,为了推动工业40从概念走向工程实践,同济大学中德工程学院与德国企业菲尼克斯电气于去年10月共同建成了国内首个工业40实验室。

不仅是智能工厂

德国费斯托(Festo)工厂哈雷摩托车生产中心借助SAP智慧工厂解决方案实现了混线生产,使得个性化定制的摩托车生产周期从21天缩减到6个小时。如果客户白天下单,晚上就能收到个性十足的哈雷摩托车了。

这是工业40的一个典型案例,也是工业40的核心——智能工厂的一个体现。所谓智能工厂,是指工厂在整个生产过程中所需的每个部件都可以通过传感器与生产设备互联,这就使得同一条生产线可以同时生产完全不一样的产品。而在以往,通常同一条生产线只能生产一个型号的产品。

纪秉盟认为,小批量、多批次、差异化生产将是未来制造业的趋势。SAP位于波茨坦的创新中心的开放式集成工厂对这样的生产模式进行了充分展示:通过融合世界一流的制造技术与IT系统,车间的同一生产线能够生产任意订单、任意数量的不同产品,不仅摆脱了对于生产线控制员的依赖,同时还能灵活处理订单更改、产品组合和流程调整等工作。

业界很多人认为,智能工厂就是工业40。这种看法有点偏颇。作为德国工业40的重要参与者,SAP和西门子都不那么认为。如果我们观察一下工业产业的变化就可以理解这一点。

近日,京东商城创始人、董事局主席兼首席执行官刘强东公开表示,冰箱应该完全免费,而通过背后的数据和服务赚钱。比如用户的冰箱里没有饮料了,冰箱会在屏幕上推送京东的购买信息,一键购买。京东还为此成立了专门的智能硬件公司。

如此可见,制造业已经不再是以往的制造业,工业也不再是以往的工业。工业40时代,我们要采用与以往完全不同的心态,以及生产和运营模式。预测性维护、智能化物流也被认为是工业40的重要特征。

和以往要基于设备、产品的运行时间定期维护不一样的是,在工业40时代,维护人员根据传感器回传的设备运行信息,并对这些信息进行分析后,预先掌握设备性能状态,从而更加灵活、高效地对设备、产品进行有针对性的维护、保养。据悉,SAP已经在欧洲帮助风力发电企业降低维护、保养成本,节省资源,提高风力发电机组的性能和工作绩效。纪秉盟认为,通过采用能够报告自身性能的智能设备,制造商可以收集海量数据,然后利用诸如SAPHANA这样的分析工具来分析这些数据,建立一个预测性维护服务平台。从长远来看,制造商的角色将逐渐向服务提供商转变,不仅出售机器,还提供全套服务和使用模式。这样,客户就只管使用产品,而无需担心产品维护。

柯曼认为物流智能化可以分对内物流和对外物流两类来看。对内物流举例来说,物流公司可以根据货轮运载的集装箱上安装的传感器传送的地理位置等信息预测货轮到港时间,合理安排货车进港时间,从而减少货车等待时间,缓解码头的拥堵状态。吞吐能力达到14万吨、可容纳5500辆卡车的德国汉堡港已经做了示范。此前,为了合理安排每天进出港口的5500辆货车,汉堡港要做很多协调、调度工作。现在汉堡港通过与轮船进行信息交互,根据货船的到港时间或者货轮上装载的货物特性来为货车进出港的时间排序。这样,货车平均在港口停留30分钟即可完成作业,大大缓解了港口交通拥堵的状态。汉堡港口未来还希望连通所有运输领域,从水路到公路一直到铁路。对外物流举例来说,整车生产厂家可以预测整车生产还需要多长时间,从而合理安排货运,减少货车的等待时间。

夯实信息化基础

国家新材料产业发展战略咨询委员会副主任邵立勤近日在一次公开的会议发表言论称,欧美已经开始工业40革命,而中国还在为淘宝买卖廉价次品而沾沾自喜,这样即将到来的工业革命很可能会把中国抛弃掉。这一言论引起了业界的热议。

工业40看起来很美,但是确实似乎离我们有点远。记者在近年的采访过程中走访不少工厂发现,尽管我国不乏非常先进的工业企业,但是很多工厂的自动化程度都比较低,信息化应用水平还比较低。甚至可以说,有些工业企业可能还处于工业20时代。

中国工程院院士、中国互联网协会理事长邬贺铨在2014年举办的中国国际工业博览会上坦言,我国的工厂差别很大,在落实工业40过程中的关键难点是在于,目前有些工厂实现内部数据共享都很难,更别说要在企业之间打通信息孤岛了。

现在说拥抱工业40是否为时过早

事实并非如此。现实正在驱动中国工业转型变革。波士顿咨询集团(BostonConsultingGroup)最近进行的一项研究发现,过去十年中国劳动力的工资涨幅超过4倍,再加上人民币升值,使得中国的制造成本直逼美国。低廉的劳动力成本不能再作为中国制造在全球市场上的优势标签,中国制造企业要最大化利用资源,将生产变得更加高效;要尽可能地缩短产品上市时间,对市场的响应更加快速,从而快速满足不断变化的客户需求;还要快速实现各环节的灵活变动,将生产变得更加柔性。

拥抱被普遍认为是工业发展方向的工业40无疑是一条可行之路。拷贝了德国工业40示范工厂——德国安贝格电子工厂的西门子成都工厂为未来中国制造的变革方向提供了一个良好的参考。数据显示,通过数字化的工厂规划,可以减少产品上市时间至少30%;通过优化规划质量,可以降低制造成本13%。

来自西门子的资料称,数字化企业平台是实现数字制造的载体,它可以实现从产品设计、生产规划、生产工程,到生产执行和服务的全生命周期的高效运行。西门子成都工厂所应用的数字化企业平台涵盖五个层面:第一层企业层,主要指由PLM软件和ERP系统构建的企业顶层结构,用于提供统一的生产数据、工艺路线、设计清单等;第二层管理层,主要包括MES(制造执行系统)等生产管理软件,用于对重要的数据流和生产管理进行控制;第三层操作层,主要包含西门子集散数据系统(DCS)数据采集与监视控制(SCADA)系统设备状态管理系统,用于监控生产过程、设备状态;第四层现场控制层,主要包含西门子可编程逻辑控制器(PLC);第五层,设备控制层。第四层和第五层为上层的MES等系统提供各种数据并进行交换。

但是,对于多数传统制造企业来说,信息化水平要达到西门子成都工厂那样的水平并不容易。SAP中国研究院院长李瑞成近日撰文称,实现工业40并不是短期内可以一蹴而就的,这是一个长期、渐进的过程。在此过程中,软件是重中之重。目前,基本的技术和现有制造体系的核心价值等均需要调整才能适应工业40的具体要求。

如此可见,对于我国生产制造来说,当前向智能制造、工业40迈进的很重要的一点,就是在信息化方面参考西门子成都工厂的五层架构查缺补漏,最终建成一个完善的数字化企业平台。

中国电子信息产业发展研究院院长罗文在《工业40中国启示录》一文中指出,德国工业40战略与我国提出的“两化”深度融合有很多相通之处,我国应该把“两化”深度融合作为主要着力点。

从某种角度来看,工业40是由新技术驱动的,因此在迈向工业40的过程中,新技术的引入至关重要。

注重标准和平台建设

工业40强调由集中式控制向分散式增强型控制模式的转变,从而建立一个高度灵活的个性化和数字化的产品与服务的生产模式,这需要大量的新技术作为支撑。柯曼认为,大数据、云计算和移动互联等将技术在工业40中大有作为:在海量终端实现互联后,需要大数据技术对海量结构化数据进行存储和分析处理;而云计算则是将不同利益相关者通过同一套数据进行互联的最好途径;移动互联技术可以将具有可预见特性的维修信息推送到终端,还可以帮助用户通过移动终端实时了解工厂的运行情况,而不一定在工厂的控制中心。

柯曼补充说,工业40要获得成功,需要满足以下7个因素:解决网络安全问题,制定相关安全政策;在数据传输等方面制定国际统一标准;要为社交所带来的影响做好准备,并积累相关技能和人才;应对好复杂性带来的挑战;完善工业领域带宽基础架构;法律框架与监管体制调整;以开放的心态面对信息交流和互动。

李瑞成比喻,未来的制造业将和服务行业一样,建立在互联网这一“共同的底盘”之上,人与人、人与机器、机器与机器之间将对话协同,工厂生产由高度自动化转向智能生产。

“共同的底盘”使得横向和纵向的数据集成变得更加重要。如何才能真正实现集成被广泛认可和采用的规则和标准就显得尤为重要。

事实上,为了保障工业40的顺利实现,德国把标准化排在工业40八项行动中的首位,同时建议在工业40平台下成立一个工作小组,专门处理标准化和参考架构的问题。2013年12月,德国电气电子和信息技术协会发表了德国首个工业40标准化路线图。

《中德合作行动纲要:共塑创新》指出,工业40在世界范围内的成功取决于国际通行的规则与标准。中德两国将在标准问题上紧密合作,并将工业40议题纳入中德标准化合作委员会。双方将继续加强中德标准化合作委员会框架下的现有合作,致力于开展更具系统性和战略性的合作。

为此,罗文建议,我国在推进“两化”深度融合的具体实践中,也应高度重视发挥标准化工作在产业发展中的引领作用,及时制定、出台“两化”深度融合标准化路线图,引导企业推进信息化建设。同时,还要着力实现标准的国际化,使得中国制定的标准得到国际上的广泛采用,以夺取未来产业竞争的制高点和话语权。

柯曼透露,已经全方位参与中国工业40建设的SAP非常重视这一点,SAP中国研究院作为中国物联网协会的主要成员将参与中国相关的行业标准的制定工作。

从国家层面来看,罗文还建议要超前部署、建设国家信息物理系统网络平台。信息物理系统将改变人类与物理世界的交互方式,物质生产力、信息生产力,实现能源、材料和信息三种资源高度融合,将使未来产业发生真正革命性的变革,对未来世界产生深远影响。他指出,美、德等世界工业强国都高度重视信息物理空间构建,加强战略前瞻部署,并取得积极研究进展。中国要决胜未来的竞争,必须在构建信息物理系统网络平台上先行一步:一方面,在国家新的信息化发展战略中加强对CPS的总体布局,研究制定CPS建设的战略目标、重点任务、发展路径和政策举措。同时,在制造业发展、智慧城市建设、国家网络和信息安全等工作中加强前瞻部署和应用推广。另一方面,可借鉴美国组建“国家制造创新网络中心”的做法,组建一批国家信息物理系统网络平台,负责承担基础理论研究,组织力量研发突破CPS软件、传感器、移动终端设备等工具和装备,推动重点行业企业的开发应用。

事实上,业界还有一个说法,就是我国相比其他国家更容易将工业40落地。这是因为我国政府的推动力比其他国家更大。

2009年,恶意软件曾操控某核浓缩工厂的离心机,导致所有离心机失控。该恶意软件又称“震网”,通过闪存驱动器入侵独立网络系统,并在各生产网络中自动扩散。通过“震网”事件,我们看到将网络攻击作为武器破坏联网实体工厂的可能。这场战争显然是失衡的:企业必须保护众多的技术,而攻击者只需找到一个最薄弱的环节。

但非常重要的一点是,企业不仅需要关注外部威胁,还需关注真实存在却常被忽略的网络风险,而这些风险正是由企业在创新、转型和现代化过程中越来越多地应用智能互联技术所引致的。否则,企业制定的战略商业决策将可能导致该等风险,企业应管控并降低该等新兴风险。

工业40时代,智能机器之间的互联性不断增强,风险因素也随之增多。工业40开启了一个互联互通、智能制造、响应式供应网络和定制产品与服务的时代。借助智能、自动化技术,工业40旨在结合数字世界与物理操作,推动智能工厂和先进制造业的发展 。但在意图提升整个制造与供应链流程的数字化能力并推动联网设备革命性变革过程中,新产生的网络风险让所有企业都感到措手不及。针对网络风险制定综合战略方案对制造业价值链至关重要,因为这些方案融合了工业40的重要驱动力:运营技术与信息技术。

随着工业40时代的到来,威胁急剧增加,企业应当考虑并解决新产生的风险。简而言之,在工业40时代制定具备安全性、警惕性和韧性的网络风险战略将面临不同的挑战。当供应链、工厂、消费者以及企业运营实现联网,网络威胁带来的风险将达到前所未有的广度和深度。

在战略流程临近结束时才考虑如何解决网络风险可能为时已晚。开始制定联网的工业40计划时,就应将网络安全视为与战略、设计和运营不可分割的一部分。

本文将从现代联网数字供应网络、智能工厂及联网设备三大方面研究各自所面临的网络风险。3在工业40时代,我们将探讨在整个生产生命周期中(图1)——从数字供应网络到智能工厂再到联网物品——运营及信息安全主管可行的对策,以预测并有效应对网络风险,同时主动将网络安全纳入企业战略。

数字化制造企业与工业40

工业40技术让数字化制造企业和数字供应网络整合不同来源和出处的数字化信息,推动制造与分销行为。

信息技术与运营技术整合的标志是向实体-数字-实体的联网转变。工业40结合了物联网以及相关的实体和数字技术,包括数据分析、增材制造、机器人技术、高性能计算机、人工智能、认知技术、先进材料以及增强现实,以完善生产生命周期,实现数字化运营。

工业40的概念在物理世界的背景下融合并延伸了物联网的范畴,一定程度上讲,只有制造与供应链/供应网络流程会经历实体-数字和数字-实体的跨越(图2)。从数字回到实体的跨越——从互联的数字技术到创造实体物品的过程——这是工业40的精髓所在,它支撑着数字化制造企业和数字供应网络。

即使在我们 探索 信息创造价值的方式时,从制造价值链的角度去理解价值创造也很重要。在整个制造与分销价值网络中,通过工业40应用程序集成信息和运营技术可能会达到一定的商业成果。

不断演变的供应链和网络风险

有关材料进入生产过程和半成品/成品对外分销的供应链对于任何一家制造企业都非常重要。此外,供应链还与消费者需求联系紧密。很多全球性企业根据需求预测确定所需原料的数量、生产线要求以及分销渠道负荷。由于分析工具也变得更加先进,如今企业已经能够利用数据和分析工具了解并预测消费者的购买模式。

通过向整个生态圈引入智能互联的平台和设备,工业40技术有望推动传统线性供应链结构的进一步发展,并形成能从价值链上获得有用数据的数字供应网络,最终改进管理,加快原料和商品流通,提高资源利用率,并使供应品更合理地满足消费者需求。

尽管工业40能带来这些好处,但数字供应网络的互联性增强将形成网络弱点。为了防止发生重大风险,应从设计到运营的每个阶段,合理规划并详细说明网络弱点。

在数字化供应网络中共享数据的网络风险

随着数字供应网络的发展,未来将出现根据购买者对可用供应品的需求,对原材料或商品进行实时动态定价的新型供应网络。5由于只有供应网络各参与方开放数据共享才可能形成一个响应迅速且灵活的网络,且很难在保证部分数据透明度的同时确保其他信息安全,因此形成新型供应网络并非易事。

因此,企业可能会设法避免信息被未授权网络用户访问。 此外,他们可能还需对所有支撑性流程实施统一的安全措施,如供应商验收、信息共享和系统访问。企业不仅对这些流程拥有专属权利,它们也可以作为获取其他内部信息的接入点。这也许会给第三方风险管理带来更多压力。在分析互联数字供应网络的网络风险时,我们发现不断提升的供应链互联性对数据共享与供应商处理的影响最大(图3)。

为了应对不断增长的网络风险,我们将对上述两大领域和应对战略逐一展开讨论。

数据共享:更多利益相关方将更多渠道获得数据

企业将需要考虑什么数据可以共享,如何保护私人所有或含有隐私风险的系统和基础数据。比 如,数字供应网络中的某些供应商可能在其他领域互为竞争对手,因此不愿意公开某些类型的数据,如定价或专利品信息。此外,供应商可能还须遵守某些限制共享信息类型的法律法规。因此,仅公开部分数据就可能让不良企图的人趁机获得其他信息。

企业应当利用合适的技术,如网络分段和中介系统等,收集、保护和提供信息。此外,企业还应在未来生产的设备中应用可信的平台模块或硬件安全模块等技术,以提供强大的密码逻辑支持、硬件授权和认证(即识别设备的未授权更改)。

将这种方法与强大的访问控制措施结合,关键任务操作技术在应用点和端点的数据和流程安全将能得到保障。

在必须公开部分数据或数据非常敏感时,金融服务等其他行业能为信息保护提供范例。目前,企业纷纷开始对静态和传输中的数据应用加密和标记等工具,以确保数据被截获或系统受损情况下的通信安全。但随着互联性的逐步提升,金融服务企业意识到,不能仅从安全的角度解决数据隐私和保密性风险,而应结合数据管治等其他技术。事实上,企业应该对其所处环境实施风险评估,包括企业、数字供应网络、行业控制系统以及联网产品等,并根据评估结果制定或更新网络风险战略。总而言之,随着互联性的不断增强,上述所有的方法都能找到应实施更高级预防措施的领域。

供应商处理:更广阔市场中供应商验收与付款

由于新伙伴的加入将使供应商体系变得更加复杂,核心供应商群体的扩张将可能扰乱当前的供应商验收流程。因此,追踪第三方验收和风险的管治、风险与合规软件需要更快、更自主地反应。此外,使用这些应用软件的信息安全与风险管理团队还需制定新的方针政策,确保不受虚假供应商、国际制裁的供应商以及不达标产品分销商的影响。消费者市场有不少类似的经历,易贝和亚马逊就曾发生过假冒伪劣商品和虚假店面等事件。

区块链技术已被认为能帮助解决上述担忧并应对可能发生的付款流程变化。尽管比特币是建立货币 历史 记录的经典案例,但其他企业仍在 探索 如何利用这个新工具来决定商品从生产线到各级购买者的流动。7创建团体共享 历史 账簿能建立信任和透明度,通过验证商品真实性保护买方和卖方,追踪商品物流状态,并在处理退换货时用详细的产品分类替代批量分拣。如不能保证产品真实性,制造商可能会在引进产品前,进行产品测试和鉴定,以确保足够的安全性。

信任是数据共享与供应商处理之间的关联因素。企业从事信息或商品交易时,需要不断更新其风险管理措施,确保真实性和安全性;加强监测能力和网络安全运营,保持警惕性;并在无法实施信任验证时保护该等流程。

在这个过程中,数字供应网络成员可参考其他行业的网络风险管理方法。某些金融和能源企业所采用的自动交易模型与响应迅速且灵活的数字供应网络就有诸多相似之处。它包含具有竞争力的知识产权和企业赖以生存的重要资源,所有这些与数字供应网络一样,一旦部署到云端或与第三方建立联系就容易遭到攻击。金融服务行业已经意识到无论在内部或外部算法都面临着这样的风险。因此,为了应对内部风险,包括显性风险(企业间谍活动、蓄意破坏等)和意外风险(自满、无知等),软件编码和内部威胁程序必须具备更高的安全性和警惕性。

事实上,警惕性对监测非常重要:由于制造商逐渐在数字供应网络以外的生产过程应用工业40技术,网络风险只会成倍增长。

智能生产时代的新型网络风险

随着互联性的不断提高,数字供应网络将面临新的风险,智能制造同样也无法避免。不仅风险的数量和种类将增加,甚至还可能呈指数增长。不久前,美国国土安全部出版了《物联网安全战略原则》与《生命攸关的嵌入式系统安全原则》,强调应关注当下的问题,检查制造商是否在生产过程中直接或间接地引入与生命攸关的嵌入式系统相关的风险。

“生命攸关的嵌入式系统”广义上指几乎所有的联网设备,无论是车间自动化系统中的设备或是在第三方合约制造商远程控制的设备,都应被视为风险——尽管有些设备几乎与生产过程无关。

考虑到风险不断增长,威胁面急剧扩张,工业40时代中的制造业必须彻底改变对安全的看法。

联网生产带来新型网络挑战

随着生产系统的互联性越来越高,数字供应网络面临的网络威胁不断增长扩大。不难想象,不当或任意使用临时生产线可能造成经济损失、产品质量低下,甚至危及工人安全。此外,联网工厂将难以承受倒闭或其他攻击的后果。有证据表明,制造商仍未准备好应对其联网智能系统可能引发的网络风险: 2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究发现,三分之一的制造商未对工厂车间使用的工业控制系统做过任何网络风险评估。

可以确定的是,自进入机械化生产时代,风险就一直伴随着制造商,而且随着技术的进步,网络风险不断增强,物理威胁也越来越多。但工业40使网络风险实现了迄今为止最大的跨越。各阶段的具体情况请参见图4。

从运营的角度看,在保持高效率和实施资源控制时,工程师可在现代化的工业控制系统环境中部署无人站点。为此,他们使用了一系列联网系统,如企业资源规划、制造执行、监控和数据采集系统等。这些联网系统能够经常优化流程,使业务更加简单高效。并且,随着系统的不断升级,系统的自动化程度和自主性也将不断提高(图5)。

从安全的角度看,鉴于工业控制系统中商业现货产品的互联性和使用率不断提升,大量暴露点将可能遭到威胁。与一般的IT行业关注信息本身不同,工业控制系统安全更多关注工业流程。因此,与传统网络风险一样,智能工厂的主要目标是保证物理流程的可用性和完整性,而非信息的保密性。

但值得注意的是,尽管网络攻击的基本要素未发生改变,但实施攻击方式变得越来越先进(图5)。事实上,由于工业40时代互联性越来越高,并逐渐从数字化领域扩展到物理世界,网络攻击将可能对生产、消费者、制造商以及产品本身产生更广泛、更深远的影响(图6)。

结合信息技术与运营技术:

当数字化遇上实体制造商实施工业40 技术时必须考虑数字化流程和将受影响的机器和物品,我们通常称之为信息技术与运营技术的结合。对于工业或制造流程中包含了信息技术与运营技术的公司,当我们探讨推动重点运营和开发工作的因素时,可以确定多种战略规划、运营价值以及相应的网络安全措施(图7)。

首先,制造商常受以下三项战略规划的影响:

健康 与安全: 员工和环境安全对任何站点都非常重要。随着技术的发展,未来智能安全设备将实现升级。

生产与流程的韧性和效率: 任何时候保证连续生产都很重要。在实际工作中,一旦工厂停工就会损失金钱,但考虑到重建和重新开工所花费的时间,恢复关键流程可能将导致更大的损失。

检测并主动解决问题: 企业品牌与声誉在全球商业市场中扮演着越来越重要的角色。在实际工作中,工厂的故障或生产问题对企业声誉影响很大,因此,应采取措施改善环境,保护企业的品牌与声誉。

第二,企业需要在日常的商业活动中秉持不同的运营价值理念:

系统的可操作性、可靠性与完整性: 为了降低拥有权成本,减缓零部件更换速度,站点应当采购支持多个供应商和软件版本的、可互操作的系统。

效率与成本规避: 站点始终承受着减少运营成本的压力。未来,企业可能增加现货设备投入,加强远程站点诊断和工程建设的灵活性。

监管与合规: 不同的监管机构对工业控制系统环境的安全与网络安全要求不同。未来企业可能需要投入更多,以改变环境,确保流程的可靠性。

工业40时代,网络风险已不仅仅存在于供应网络和制造业,同样也存在于产品本身。 由于产品的互联程度越来越高——包括产品之间,甚至产品与制造商和供应网络之间,因此企业应该明白一旦售出产品,网络风险就不会终止。

风险触及实体物品

预计到2020年,全球将部署超过200亿台物联网设备。15其中很多设备可能会被安装在制造设备和生产线上,而其他的很多设备将有望进入B2B或B2C市场,供消费者购买使用。

2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究结果显示,近一半的制造商在联网产品中采用移动应用软件,四分之三的制造商使用Wi-Fi网络在联网产品间传输数据。16基于上述网络途径的物联通常会形成很多漏洞。物联网设备制造商应思考如何将更强大、更安全的软件开发方法应用到当前的物联网开发中,以应对设备常常遇到的重大网络风险。

尽管这很有挑战性,但事实证明,企业不能期望消费者自己会更新安全设置,采取有效的安全应对措施,更新设备端固件或更改默认设备密码。

比如,2016年10月,一次由Mirai恶意软件引发的物联网分布式拒绝服务攻击,表明攻击者可以利用这些弱点成功实施攻击。在这次攻击中,病毒通过感染消费者端物联网设备如联网的相机和电视,将其变成僵尸网络,并不断冲击服务器直至服务器崩溃,最终导致美国最受欢迎的几家网站瘫痪大半天。17研究者发现,受分布式拒绝服务攻击损害的设备大多使用供应商提供的默认密码,且未获得所需的安全补丁或升级程序。18需要注意的是,部分供应商所提供的密码被硬编码进了设备固件中,且供应商未告知用户如何更改密码。

当前的工业生产设备常缺乏先进的安全技术和基础设施,一旦外围保护被突破,便难以检测和应对此类攻击。

风险与生产相伴而行

由于生产设施越来越多地与物联网设备结合,因此,考虑这些设备对制造、生产以及企业网络所带来的安全风险变得越来越重要。受损物联网设备所产生的安全影响包括:生产停工、设备或设施受损如灾难性的设备故障,以及极端情况下的人员伤亡。此外,潜在的金钱损失并不仅限于生产停工和事故整改,还可能包括罚款、诉讼费用以及品牌受损所导致的收入减少(可能持续数月甚至数年,远远超过事件实际持续的时间)。下文列出了目前确保联网物品安全的一些方法,但随着物品和相应风险的激增,这些方法可能还不够。

传统漏洞管理

漏洞管理程序可通过扫描和补丁修复有效减少漏洞,但通常仍有多个攻击面。攻击面可以是一个开放式的TCP/IP或UDP端口或一项无保护的技术,虽然目前未发现漏洞,但攻击者以后也许能发现新的漏洞。

减少攻击面

简单来说,减少攻击面即指减少或消除攻击,可以从物联网设备制造商设计、建造并部署只含基础服务的固化设备时便开始着手。安全所有权不应只由物联网设备制造商或用户单独所有;而应与二者同样共享。

更新悖论

生产设施所面临的另一个挑战被称为“更新悖论”。很多工业生产网络很少更新升级,因为对制造商来说,停工升级花费巨大。对于某些连续加工设施来说,关闭和停工都将导致昂贵的生产原材料发生损失。

很多联网设备可能还将使用十年到二十年,这使得更新悖论愈加严重。认为设备无须应用任何软件补丁就能在整个生命周期安全运转的想法完全不切实际。20 对于生产和制造设施,在缩短停工时间的同时,使生产资产利用率达到最高至关重要。物联网设备制造商有责任生产更加安全的固化物联网设备,这些设备只能存在最小的攻击表面,并应利用默认的“开放”或不安全的安全配置规划最安全的设置。

制造设施中联网设备所面临的挑战通常也适用基于物联网的消费产品。智能系统更新换代很快,而且可能使消费型物品更容易遭受网络威胁。对于一件物品来说,威胁可能微不足道,但如果涉及大量的联网设备,影响将不可小觑——Mirai病毒攻击就是一个例子。在应对威胁的过程中,资产管理和技术战略将比以往任何时候都更重要。

人才缺口

2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究表明,75%的受访高管认为他们缺少能够有效实施并维持安全联网生产生态圈的技能型人才资源。21随着攻击的复杂性和先进程度不断提升,将越来越难找到高技能的网络安全人才,来设计和实施具备安全性、警觉性和韧性的网络安全解决方案。

网络威胁不断变化,技术复杂性越来越高。搭载零日攻击的先进恶意软件能够自动找到易受攻击的设备,并在几乎无人为参与的情况下进行扩散,并可能击败已遭受攻击的信息技术/运营技术安全人员。这一趋势令人感到不安,物联网设备制造商需要生产更加安全的固化设备。

多管齐下,保护设备

在工业应用中,承担一些非常重要和敏感任务——包括控制发电与电力配送,水净化、化学品生产和提纯、制造以及自动装配生产线——的物联网设备通常最容易遭受网络攻击。由于生产设施不断减少人为干预,因此仅在网关或网络边界采取保护措施的做法已经没有用(图8)。

从设计流程开始考虑网络安全

制造商也许会觉得越来越有责任部署固化的、接近军用级别的联网设备。很多物联网设备制造商已经表示他们需要采用包含了规划和设计的安全编码方法,并在整个硬件和软件开发生命周期内采用领先的网络安全措施。22这个安全软件开发生命周期在整个开发过程中添加了安全网关(用于评估安全控制措施是否有效),采用领先的安全措施,并用安全的软件代码和软件库生产具备一定功能的安全设备。通过利用安全软件开发生命周期的安全措施,很多物联网产品安全评估所发现的漏洞能够在设计过程中得到解决。但如果可能的话,在传统开发生命周期结束时应用安全修补程序通常会更加费力费钱。

从联网设备端保护数据

物联网设备所产生的大量信息对工业40制造商非常重要。基于工业40的技术如高级分析和机器学习能够处理和分析这些信息,并根据计算分析结果实时或近乎实时地做出关键决策。这些敏感信息并不仅限于传感器与流程信息,还包括制造商的知识产权或者与隐私条例相关的数据。事实上,德勤与美国生产力和创新制造商联盟(MAPI)的调研发现,近70%的制造商使用联网产品传输个人信息,但近55%的制造商会对传输的信息加密。

生产固化设备需要采取可靠的安全措施,在整个数据生命周期间,敏感数据的安全同样也需要得到保护。因此,物联网设备制造商需要制定保护方案:不仅要安全地存放所有设备、本地以及云端存储的数据,还需要快速识别并报告任何可能危害这些数据安全的情况或活动。

保护云端数据存储和动态数据通常需要采用增强式加密、人工智能和机器学习解决方案,以形成强大的、响应迅速的威胁情报、入侵检测以及入侵防护解决方案。

随着越来越多的物联网设备实现联网,潜在威胁面以及受损设备所面临的风险都将增多。现在这些攻击面可能还不足以形成严重的漏洞,但仅数月或数年后就能轻易形成漏洞。因此,设备联网时必须使用补丁。确保设备安全的责任不应仅由消费者或联网设备部署方承担,而应由最适合实施最有效安全措施的设备制造商共同分担。

应用人工智能检测威胁

2016年8月,美国国防高级研究计划局举办了一场网络超级挑战赛,最终排名靠前的七支队伍在这场“全机器”的黑客竞赛中提交了各自的人工智能平台。网络超级挑战赛发起于2013年,旨在找到一种能够扫描网络、识别软件漏洞并在无人为干预的情况下应用补丁的、人工智能网络安全平台或技术。美国国防高级研究计划局希望借助人工智能平台大大缩短人类以实时或接近实时的方式识别漏洞、开发软件安全补丁所用的时间,从而减少网络攻击风险。

真正意义上警觉的威胁检测能力可能需要运用人工智能的力量进行大海捞针。在物联网设备产生海量数据的过程中,当前基于特征的威胁检测技术可能会因为重新收集数据流和实施状态封包检查而被迫达到极限。尽管这些基于特征的检测技术能够应对流量不断攀升,但其检测特征数据库活动的能力仍旧有限。

在工业40时代,结合减少攻击面、安全软件开发生命周期、数据保护、安全和固化设备的硬件与固件以及机器学习,并借助人工智能实时响应威胁,对以具备安全性、警惕性和韧性的方式开发设备至关重要。如果不能应对安全风险,如“震网”和Mirai恶意程序的漏洞攻击,也不能生产固化、安全的物联网设备,则可能导致一种不好的状况:关键基础设施和制造业将经常遭受严重攻击。

攻击不可避免时,保持韧性

恰当利用固化程度很高的目标设备的安全性和警惕性,能够有效震慑绝大部分攻击者。然而,值得注意的是,虽然企业可以减少网络攻击风险,但没有一家企业能够完全避免网络攻击。保持韧性的前提是,接受某一天企业将遭受网络攻击这一事实,而后谨慎行事。

韧性的培养过程包含三个阶段:准备、响应、恢复。

准备。企业应当准备好有效应对各方面事故,明确定义角色、职责与行为。审慎的准备如危机模拟、事故演练和战争演习,能够帮助企业了解差异,并在真实事故发生时采取有效的补救措施。

响应。应仔细规划并对全公司有效告知管理层的响应措施。实施效果不佳的响应方案将扩大事件的影响、延长停产时间、减少收入并损害企业声誉。这些影响所持续的时间将远远长于事故实际持续的时间。

恢复。企业应当认真规划并实施恢复正常运营和限制企业遭受影响所需的措施。应将从事后分析中汲取到的教训用于制定之后的事件响应计划。具备韧性的企业应在迅速恢复运营和安全的同时将事故影响降至最低。在准备应对攻击,了解遭受攻击时的应对之策并快速消除攻击的影响时,企业应全力应对、仔细规划、充分执行。

推动网络公司发展至今日的比特(0和1)让制造业的整个价值链经历了从供应网络到智能工厂再到联网物品的巨大转变。随着联网技术应用的不断普及,网络风险可能增加并发生改变,也有可能在价值链的不同阶段和每一家企业有不同的表现。每家企业应以最能满足其需求的方式适应工业生态圈。

企业不能只用一种简单的解决方法或产品或补丁解决工业40所带来的网络风险和威胁。如今,联网技术为关键商业流程提供支持,但随着这些流程的关联性提高,可能会更容易出现漏洞。因此,企业需要重新思考其业务连续性、灾难恢复力和响应计划,以适应愈加复杂和普遍的网络环境。

法规和行业标准常常是被动的,“合规”通常表示最低安全要求。企业面临着一个特别的挑战——当前所采用的技术并不能完全保证安全,因为干扰者只需找出一个最薄弱的点便能成功入侵企业系统。这项挑战可能还会升级:不断提高的互联性和收集处理实时分析将引入大量需要保护的联网设备和数据。

企业需要采用具备安全性、警惕性和韧性的方法,了解风险,消除威胁:

安全性。采取审慎的、基于风险的方法,明确什么是安全的信息以及如何确保信息安全。贵公司的知识产权是否安全?贵公司的供应链或工业控制系统环境是否容易遭到攻击?

警惕性。持续监控系统、网络、设备、人员和环境,发现可能存在的威胁。需要利用实时威胁情报和人工智能,了解危险行为,并快速识别引进的大量联网设备所带来的威胁。

韧性。随时都可能发生事故。贵公司将会如何应对?多久能恢复正常运营?贵公司将如何快速消除事故影响?

由于企业越来越重视工业40所带来的商业价值,企业将比以往任何时候更需要提出具备安全性、警惕性和韧性的网络风险解决方案。

报告出品方:德勤中国

获取本报告pdf版请登录远瞻智库官网或点击链接:「链接」

我们身边的共享单车即应用了物联网技术,《物联网时代》将物联网定义为:“通过基于互联网协议的分布式云端,将所有的东西都互联起来。”其作者马切伊认为,物联网实际上并不是什么新的发明,它以不同的形式以及存在了10年以上的时间。

连接带来了时代的需求的变化,当世界上有十亿网民的时候,Facebook就自然的出现了。

如果你仔细地观察过去25年里的科技企业,你就会发现变化一直在发生。

每隔3-7年,企业就必须对它们进行重塑。那些错过了一次技术转型的公司如果能迎头赶上的话,那么还有可能重新恢复过来。而那些错过了两次技术转型的公司,则有可能已经消失了。如果你有兴趣的话,可以查看一下50年前标准普尔500强公司的名单,如果统计无误的话,截止到2017年,只有19%的企业现在依然存在。

当我们在网络上看着90后“佛系”“中年人”的话题捧腹大笑的时候,其实我们没有看到这背后透露着的真正原因是:90后们生活在“变的太快”的世界里,太多学习工作生活里的问题他的上一辈甚至前一代人都没有遇到过,他们的迷茫那么大,以至于有些人认为:至于以不变应万变才是“正解”。

而如果我们把这件事扩展的更大一些,无论我们的真实年龄如何,我们都注定属于将遭遇革命性变革的一代人。这也正是马切伊克兰兹(Maciej Kranz)将每一个商业领域正经历“革命性变革”的这一代人叫做“物联网一代”的原因。

什么是物联网?

一个相对繁琐的解释是:

物联网是互联网的一个延伸。互联网的终端是计算机(PC、服务器),我们运行的所有程序都是计算机和网络中的数据处理和数据传输,没有涉及任何其他的终端。而未来,所有物和物之间都可以实现互联。物联网能够让互联网连接对象使用嵌入式传感器进行数据收集和交换的网络,汽车,厨房电器,甚至心脏监视器都可以通过物联网连接。随着物联网在未来几年的发展,更多的电子设备将加入物联网的阵营。

而在《物联网时代》中,物联网有一个更为简单明了的定义,它是“通过基于互联网协议的分布式云端,将所有的东西都互联起来。”其作者马切伊·克兰兹是全球物联网专家,思科公司战略创新集团副总裁。在本书中,他基于思科的工作视野和在全球物联网行业一线的长期实践经验,从数十个他参与实施的物联网案例中,总结出4种已经获得验证的、可以快速回报的场景。顺带提一下,思科公司的主营业务就是物联网。

总的来看,物联网的本质还是互联网,只不过终端不再是计算机(PC、服务器),而是嵌入式计算机系统及其配套的传感器。在这个意义上说,物联网是一个很大的概念。如果单从学科上分解来看的话,它涉及到通信,信号处理,计算机视觉,自动化控制,电路系统,信息融合,无线自组织网络,MEMS传感器设计等等。

可以说,这是计算机科技发展的必然结果,为人类服务的计算机呈现出各种形态,如穿戴设备、环境监控设备、虚拟现实设备等等。只要有硬件或产品连上网,发生数据交互,就叫物联网。实际上,大数据概念最早的提出,也是因为物联网的兴起,传感器接入网络之后,大大增加了可以挖掘的数据量,网络上的数据不但包括社交网络这种来自用户的数据,还有了来自物理世界的数据。

物联网发展速度为什么这么慢?

正如马切伊在他的书中提到的那样,物联网实际上并不是什么新的发明,它以不同的形式以及存在了10年以上的时间。

它的本质便是上个世纪学术界开始兴起传感器网络、自组织及多跳网络(wireless sensor network, ad-hoc network, wireless multi-hop network)。RFID在智能物流上的应用只是最为基本的应用场景,当前的研究远比这个更为复杂。但是,受限于应用场景和技术实现的瓶颈,物联网的发展,其实无法像互联网那样爆发。

首先,现阶段的物联网应用基本都是“锦上添花”的东西,需求性并没有那么强,如可穿戴设备和智能家居,这也就是为什么很多智能硬件叫好不叫座的根本性原因;也正是因为这个原因,商业上也不会出现滴滴打车那样的持续性投入,这又反向钳制了这一技术的商业化发展。

其次,物联网技术上还有很多没有突破。最大的技术瓶颈可能在MEMS传感器的性能和无线传感网的设计实现上。

再有,就是目前在应用上还找不到突破。目前比较活的也就是智能硬件,无人机,工业物联网这块。但是离人类和互联网形成的应用需求还无法相比,目前还没出现。

最终,物联网应用的制约因素还是能源,物联网应用场景的扩展一直在等待电池技术的突破。所以,目前来说物联网首先会在那些对能量要求不是很高的方向首先取得突破,比如智能硬件和工业设备上。

总之,物联网的方向毋庸置疑有着广阔的发展前景,但是当前基础研究和相关技术还有待发展,因此看起来发展缓慢,甚至就是停滞,学术和商业界都在等待一个颠覆性应用可以让“物联网”来一次诈尸。

共享单车中的物联网技术

完全可以想象,物联网的技术前景是广阔的。

实际上,2016年底兴起的共享单车就是一个成功的物联网商业化作品。

看似简单的单车使用过程,包括了物联网技术,人联网技术(移动互联网),自动控制技术,GPS全球定位技术等多个技术领域。但是整体的技术实现并不复杂,并没有涉及到什么创新黑科技。

首先,一辆单车需要以下几样设备参与运作:

•单车上面的智能锁(这个是核心关键,包括了GPS定位模块,GPRS通讯模块,主控芯片,电控锁模块等)

•用户手中的手机和APP

•单车提供商的云服务器(平台)

关键的环节在于单车和云服务器之间的通讯,采用的是老旧的GPRS技术。为什么要用这种落后的2G技术呢? 不使用LTE呢?答案很简单: 省钱省电覆盖好。

共享单车是典型的物联网应用场景,也能很好的克服我们之前说的物联网现存的耗能的问题。它对网络的要求并不是大数据量(它只需要很少很小的几条消息),而且它不需要速度很快(几秒钟的时延,完全可以忍受),它需要很低的功耗和很长的待机时间。

早期阶段,共享单车甚至依靠短信和云服务器进行通信,所以等待解锁的时间比较久,大约需要6-10秒。

还有一个小细节,不知道有没有人遇到过。我曾经用过一次支付宝旗下集成的一款市面上不太流行的单车品牌,扫码之后,手机提示我:锁没电了。这是我第一次意识到,原来单车的锁需要电!?

当然,正因为共享单车智能锁有这么多模块,所以它当然要耗电的。

为什么早期的单车骑起来特别累?除了一些材料和工学设计的原因,也是因为:你在充当人肉发电机。后来,为了改善用户体验,开始流行太阳能充电了。所以,越来越多的单车装上了太阳能发电板(如下图)。

经过过去一年半的迭代和升级,现在市面上所有的单车使用体验相比最早的那一批已经有了质的飞跃。

同时,近些年上市的一些空气净化器,穿戴设备以及家庭环境监控设备也已经完成了一代代的自我迭代和进化,在目前的消费场景下,服务着千家万户,这正是物联网技术未来商业化发展的一个缩影。

如何顺势借力风口,成为一名成功的物联网创业者或者职场精英?

BI Intelligence 预计:到 2020 年,地球上将有超过 240 亿的物联网设备,约为人均 4 台,当我们接近这个阶段时,60 亿美元将流入物联网解决方案,包括应用程序开发,设备硬件,系统集成,数据存储等。然而这些投资在 2025 年将产生 13 万亿美元的效益。

然而正如前面所说的,基于一些目前无法攻关的技术难题,它的商业前景也是复杂的,特别是对于创业者而言,这不是一个好消息。创业者大部分都是小公司,无论多么先进的技术,一旦市场成熟,目前的互联网大鳄公司都可以迅速投入数倍于你的资金,在非常短的时间内模仿你,超过你,压垮你。

而且,目前全世界范围内,也已经有多家物联网平台已经初具规模,比如Amazon Web 服务、Microsoft Azure、ThingWorx 物联网平台、IBM 的沃森、思科物联网云连接、Salesforce IoT 云、Oracle 集成云以及 GE Predix。

因此,物联网行业的创业者应该处理好两个问题。

首先,科技行业想突破垄断,对于微软和IBM这样的大企业而言,是技术积累。对于我们这样的个人或小团队而言,最好的方法是缩小目标客户群体,专注于某一个具体的领域或者攻关一项技术去解决某一个具体的问题。主动缩小目标客群的好处就是大企业不容易来抢市场,而你我们相对容易找到目标客户,最终说服他们买你的产品。

其次,以热门概念操作以达到融资目的,而从不关心成本和收入是最错误的做法。

总结来看,就是组建一个相对小型的团队来维护一款小产品或者一个项目,这样可能反而容易成功,比如团队或项目被大公司收购。

如果你只是想成为一个工作体面收入又高的技术工作者和相关从业者,有一条相对明确的职业发展方向可以借鉴:学Java,去一家当地比较有名的计算机类企业应聘;取得一定成绩后,跳槽至国内一线物联网公司;3-5年后,有机会跳槽去国际一线企业在华公司应聘,如前面所说的这几个大型的物联网平台。如果在继续在里面服务几年,等到物联网技术真正实现商业化爆炸的那一天,你绝对已经可以斩钉截铁向别人介绍说:你好,我是物联网行业的资深行业顾问!就像我们前文提到的《物联网时代》作者马切伊先生一样。

就算不完全复制这条路,普通人想要搭上物联网这班车也不是没有可能的。毕竟,物联网的范围其实极其广泛。无论是大数据分析师、GPS定位还是井下探测,都可以算是物联网的一部分。只不过,程序猿是物联网现阶段发展时期,需求最大平均工资最高的工种而已。

以上由物联传媒提供,如有侵权联系删除

以上就是关于工业互联网平台的爆发增长态势全部的内容,包括:工业互联网平台的爆发增长态势、工业4.0对于中国制造业有什么样的启示、工业互联网时代的风险管理:工业4.0与网络安全等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!