数据思维包含哪四个特征

物联网0209

数据思维包含哪四个特征,第1张

数据思维包含四个特征:量化、数据关联、数据驱动和数据反馈。

过去人们做决策主要靠定量分析,定量分析的决策依据来自于决策者的经验和直觉,这种决策的缺点主要在于决策结果的不可确定性,决策失误的概率很大。

随着互联网的不断发展和物联网设备的不断普及,人们活动的各种数据被有意识的存储下来了,数据的收集,让我们可以通过定量分析数据,利用数据实现更好的决策制定。

比如像很多互联网公司都成立了大数据团队,收集用户的社交、电商、搜索行为等数据,通过所搜集的大数据来制定商业决策依据,以及通过数据挖掘形式,找到创新产品的机会。

大的互联网公司在满足自己内部决策需求的同时,也成了了大数据部门给其它公司进行赋能,比如蚂蚁金服的数据产品芝麻信用,不仅能够成为蚂蚁内部各种金融产品的信用审核依据,也开放给了很多行业如出行、金融、共享服务公司等,极大提高了基于信用服务的门槛和便捷性。

(1)物联网中的数据量更大:物联网的最主要特征之一是节点的海量性,除了人和服务器之外,物品、设备、传感网等都是物联网的组成节点,其数量规模远大于互联网;

同时,物联网节点的数据生成频率远高于互联网,如传感节点多数处于全时工作状态,数据流源源不断。

(2)物联网中的数据速率更高:

一方面,物联网中数据海量性必然要求骨干网汇聚更多的数据,数据的传输速率要求更高;

另一方面,由于物联网与真实物理世界直接关联,很多情况下需要实时访问、控制相应的节点和设备,因此需要高数据传输速率来支持相应的实时性。

(3)物联网中的数据更加多样化:物联网涉及的应用范围广泛,从智慧城市、智慧交通、智慧物流、商品溯源,到智能家居、智慧医疗、安防监控等,无 一不是物联网应用范畴;

在不同领域、不同行业,需要面对不同类型、不同格式的应用数据,因此物联网中数据多样性更为突出。

(4)物联网对数据真实性的要求更高:物联网是真实物理世界与虚拟信息世界的结合,其对数据的处理以及基于此进行的决策将直接影响物理世界,物联网中数据的真实性显得尤为重要。

物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。

顾名思义,物联网就是物物相连的互联网。这有两层意思:

其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;

其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。

物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。

物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。

物联网的实践最早可以追溯到1990年施乐公司的网络可乐贩售机—Networked Coke Machine。

物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防等多个领域。

它们之间的关系是互相关联、互相作用的:物联网是很多数据库的来源(设备数据),而大量设备数据的采集、控制、服务要依托云计算,设备数据的分析要依赖于数据库,而数据库的采集、分析同样依托云计算,物联网反过来能为云计算提供ISSA层的设备和服务控制,数据库分析又能为云计算所产生的运营数据提供分析、决策依据。

1、网络拓扑结构变化快2、传感器网络难以形成网络的结点和中心3、传感器网络的作用距离一般比较短4、传感器网络数据的数量不大5、物联网对数据的安全性要求较高6、网络终端之间的关联性较低7、网络地址的短缺性导致网络管理的复杂性

物联网(Internet of Things,IoT)是指通过各种物联设备(包括传感器、智能设备、嵌入式设备等)与互联网进行连接和通信,形成互联互通的网络,实现设备之间的信息交换、数据共享和智能化控制,以实现更高效、更智能、更便捷的生产、生活、管理等应用。

物联网的基本概念包括以下几个方面:

物联设备:指通过各种传感器、智能设备、嵌入式设备等实现连接和通信的物品。这些设备可以获取、处理和传输各种数据,实现物与物、人与物的交互。

互联网:指用于连接各种物联设备的底层网络基础设施,包括传输介质、网络协议、路由器、交换机等。

云计算:指利用云端的计算和存储资源,为物联网提供数据分析、处理、存储和应用服务的技术。

数据分析:指对从物联设备中收集到的大量数据进行处理、分析和挖掘,从中获取有用信息,为决策提供支持。

应用服务:指基于物联网提供的各种数据和功能,实现各种智能化应用服务,包括智能交通、智能家居、智能制造、智能医疗等。

安全和隐私保护:指对物联网中的数据和信息进行安全和隐私保护,防止黑客攻击和数据泄露等安全问题。

随着社会迅速发展,人类逐渐进入大数据的时代,而物联网与云计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大数据的前景与物联网以及云计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大数据与物联网、云计算之间的关系吧。

大数据概念

巨量资料(big data),或称大数据、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用,形成的智力资源和知识服务能力。

大数据市场格局

具体意义上来讲,早在20世纪90年代“数据仓库之父”的Bill Inmon便提出了“大数据”的概念。大数据之所以在最近走红,主要归结于互联网、移动设备、物联网和云计算等快速崛起,全球数据量大大提升。可以说,移动互联网、物联网以及云计算等热点崛起在很大程度上是大数据产生的原因。

我们通过分析,形象的知道大数据与移动互联网、物联网以及传统互联网的关系。物联网,移动互联网再加上传统互联网,每天都在产生海量数据,而大数据又通过云计算的形式,将这些数据筛选处理分析,提前出有用的信息,这就是大数据分析。

大数据与云计算

云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。近几年,云计算的概念受到了学术界、商界,甚至政府的热捧,一时间云计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。

本质上,云计算与大数据的关系是静与动的关系;云计算强调的是计算,这是动的概念;而数据则是计算的对象,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的存储能力;但是这样说,并不意味着两个概念就如此泾渭分明。大数据需要处理大数据的能力(数据获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云计算的动也是相对而言,比如基础设施即服务中的存储设备提供的主要是数据存储能力,所以可谓是动中有静。

如果数据是财富,那么大数据就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,数据宝藏终究是镜中花;没有大数据的积淀,云计算也只能是杀鸡用的宰牛刀。

大数据与物联网

物联网是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。

大数据与物联网之间的关系是相铺相成的。物联网产生大数据。美国人前几年医院一年产生500个数据,IMT1。4TB数据等各种的数据通过传感器产生,也有在网上直接产生的,我们现在处于大数据时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网络上,产生了大量的数据。

物联网产生的大数据与一般的大数据有不同的特点。物联网的数据是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的数据有明显的颗粒性,其数据通常带有时间、位置、环境和行为等信息。物联网数据可以说也是社交数据,但不是人与人的交往信息,而是物与物,物与人的社会合作信息。

除此之外,大数据助力物联网,不仅仅是收集传感性的数据,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果政府发布消息和市民微博发布消息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。

物联网时代,大量的数据从不同的设备传感器产生,单机数据库系统肯定无法存储这么大量的数据,在选择数据库方面,肯定要选择具有分布式能力存储的数据库。

在物联网时代,数据之间还有一个非常重要的特性,那就是数据之间的关联性。不同的数据从相互连接的互联网设备传感器中产生,由于不同的传感器相互连接,协同工作和采集数据,如何将大量具有相互关联的数据保存在数据库,这里我推荐使用图数据库来进行存储。

图数据库相对于其他数据库来说,最大的优势就是查询数据之间的关联性会更加快速,消耗的时间会更短。打个比方,在社交网络中,我们想要查询在用户A的粉丝中,粉丝关注了B的用户。如果使用传统关系型数据库来存储用户的关注关系,在上面的数据统计中,要使用两层Join才能算出结果,而关系型数据库Join操作会很慢。使用图型数据库存储数据的话,图中的点为用户,边为用户的关注关系,在查询A的粉丝,同时粉丝也关注B的用户,只需要遍历两层关注关系就能很快查询到结果。

图数据库也属于NoSql数据库的一种,常用的图形数据库有,JanusGraph、Neo4j、Cayley、dgraph。不同的图数据库,底层实现也不尽相同。

JanusGraph是一种分布式图数据库,由Java语言开发,可以使用Hadoop生态存储系统作为数据源,构建出数据大图。是TiTan图数据库的开源版本,支持事务的ACID。

Neo4j是一种单机的图数据库,其优势就是能够快速安装并且使用,便于新同学上手。你的数据量一般不大的话,我推荐使用Neo4j,直接使用Neo4j相关的API就可以将数据模型图构建而出,然后使用Neo4jCypher查询语言,就可以分析数据,Cypher是一种类SQL的语言。

Cayley和Dgraph都是使用Go语言实现的图数据库,Go语言的最大特性就是其编译速度和开发便捷性,Cayley和Dgraph都支持分布式存储,不过都不支持SQL语言查询数据,Dgraph不支持事务,而Cayley支持事务,不过在开源社区,Dgraph比Cayley更加活跃,这里优先建议使用Dgraph作为物联网的存储数据库。

总体来说,在物联网时代,一定要学会使用图数据库,在分析大量数据之间的关联性时,图数据库就能够派上用场,图数据库最大的优势就是分析不同数据之间的关联性。

以上就是关于数据思维包含哪四个特征全部的内容,包括:数据思维包含哪四个特征、什么是物联网中的大数据举例说明大数据的应用。、简述数据库与物联网的关系等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!