物联网(嵌入式培养)是什么意思是说物联网就是嵌入式培养吗

物联网0150

物联网(嵌入式培养)是什么意思是说物联网就是嵌入式培养吗,第1张

嵌入式培养类似于定向培养,是bai一种专门针对高考学生的培养方式,立足于培养嵌入式系统相关的人才,为国家相关机构作出巨大贡献的学生,这也是国家任务计划招生的一部分。而经过嵌入式培养的学生毕业后必须按照培养方案,到特定的地区、单位和部门工作。

这个专业旨在培养德、智、体、美、劳全面发展,具有良好的综合素质、良好的职业道德、扎实的专业基础、较强的专业技能及外语综合运用能力,掌握计算机、通信、电子等与物联网相关的基本理论、基本知识、基本技能和基本方法;

掌握无线传感器网络、射频识别(RFID)等相关知识与技术,能适应未来物联网工程及相关产业发展需要、能较好地服务地方社会经济发展、具有一定创新意识和创新能力的高级应用型工程技术人才。

扩展资料:

 

物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。

在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量;

在涉及国防军事领域方面,虽然还处在研究探索阶段,但物联网应用带来的影响也不可小觑,大到卫星、导弹、飞机、潜艇等装备系统,小到单兵作战装备,物联网技术的嵌入有效提升了军事智能化、信息化、精准化,极大提升了军事战斗力,是未来军事变革的关键。

参考资料来源:常熟理工学院官网-计算机科学与工程学院简介

参考资料来源:百度百科-嵌入式培养

本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。

文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。

专题--农业传感器与物联网

Topic--Agricultural Sensor and Internet of Things

[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10

WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10

知网阅读

[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27

YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27

摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

知网阅读

[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47

WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47

摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

知网阅读

[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58

GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58

摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。

知网阅读

[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66

JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66

摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、操作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。

知网阅读

[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81

ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81

摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

知网阅读

[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93

JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93

摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

知网阅读

[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107

SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107

摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。

知网阅读

[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108

MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108

摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。

知网阅读

[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143

HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143

摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。

知网阅读

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法: 加我微信 331760296 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广

1、物联网智慧农业推动农业走向信息化

通过多种无线传感器、无线基站和传输设备的使用,农业种植现场的各种信息能够轻易的通过自动监测传输功能呈现在管理人员的眼前,实现了管理者和种植现场的快速连接。同时通过软硬件系统和手机客户端还能够实现自然灾害监测及预警,方便作物生长现场管理,实现高度的信息共享和农业自动化。

2、物联网智慧农业提高农业生产管理水平

物联网技术在现代农业中的应用对提高传统农业的生产管理水平效果显著。在农业生产过程中,通过无线智能传感器实现农业生产现场环境参数的实时采集和利用智能物联网监控系统对所采集数据进行实时传送,为农作物生产和温室控制提供了有利的科学依据。智慧农业不仅为作物生长创造了最佳条件,提高了作物产量和质量,而且可以提高水、化肥等作物消耗品的利用率。

3、物联网智慧农业保障农产品和食品安全

在农产品和食品运输领域,电子标签、电子条码、无线传感器网络、通信网络和计算机网络等的集成应用,可实现单个或集装农产品和食品的跟踪和可视数字化管理,对农产品从生产现场到仓库、从仓库到餐桌、从生产到销售全过程实行智能监控,可实现农产品和食品的数字化、可视化物流运输和管理,同时也可很大程度提高农产品和食品的品质。

托普云农研发的标准化、个性化物联网解决方案在吉林梨树县、杭州萧山农科所、金华寿仙谷、南充高坪农牧局、湖北金秋农业、宁夏利通区、四川岳池、赣县国家现代农业示范区、广州徐闻县等地得到广泛推广应用,为当地实现节水农业、智慧农业提供着重要的技术支撑!

例如耕地质量保护大数据平台,通过搭建“1个中心,1个平台、N个应用”的平台建设模式。建一个耕地质量保护大数据中心,汇聚土、水、肥三大耕地质量数据,为耕地质量保护监测、管理、服务、应用提供数据支撑。利用大数据分析,达到精准管理,科学决策,形成指挥耕地新业态,通过大数据平台服务公共,服务管理,转变耕地保护方式。

托普水肥一体化智能灌溉系统,托普水肥一体化自动控制系统由系统云平台、墒情数据采集终端、视频监控、施肥机、过滤系统、阀门控制器、电磁阀、田间管路等组成。系统可根据监测的土壤水分、作物种类的需肥规律,设置周期性水肥计划实施轮灌。施肥机会按照用户设定的配方、灌溉过程参数自动控制灌溉量、吸肥量、肥液浓度、酸碱度等水肥过程的重要参数,实现对灌溉、施肥的定时、定量控制,充分提高水肥利用率,实现节水、节肥,改善土壤环境,提高作物品质的目的。该系统广泛应用于大田、旱田、温室、果园等种植灌溉作业。

农业物联网技术论文篇二

基于物联网技术的智慧农业实施方案分析

摘要:我国发展越来越快,科学技术水平也越来越高,并且我国的技术水平还处在不断发展的过程中。我国的农业生产也不断加入高科技,农业不断向现代化方向发展。在农业生产中物联网技术逐渐受到重视。物联网技术是_种新的农业发展的模式,是智慧农业技术,这项技术不但能提高我国农业的生产效率,还能促进农业的现代化发展。这项技术主要是解决我国农业信息传播不够及时、新技术推广受限等问题。文章将针对物联网技术在我国智慧农业中的促进作用进行详细的分析,从而为我国农业发展做出贡献,推进我国农业的不断发展。

关键词:物联网;技术角度;智慧农业;实施方案

我国是一个地大物博的国家,自古以来就是农业大国,在古代农作物的产量主要受自然气候的影响,而现在我国通过技术手段可以大大地提高农作物的产量。我国一直在提倡生态农业和智慧农业,现在我国的技术更是在不断更新和发展,尤其是物联网技术的出现大大促进了智慧农业的发展,利用物联网技术是发展我国智慧农业的一个重要手段,也是我国农业发展的必经之路。科学技术为农业生产提供的是技术保障和技术创新,为了确保我国的农产品能够实现自给自足并能满足出口要求,我国的农业必须不断创新发展,农业的发展还能促进农民增收,农民增收有利于提高农民的生活水平,有利于我国社会的稳定和发展。物联网技术是利用现代化的通信技术手段对农业生产进行跟踪和监控管理。在以前我国的农民主要是通过自己的经验进行农业种植,我国的农业专家也主要是通过人工测量和人工种植试验田的方法收集农业信息。这不仅要消耗大量的人力和物力,而且还非常消耗时间,整体效率很低,而且受多种不确定因素的影响,准确度也很低。但是自从采取了物联网技术之后,应用无限传感器收集信息不仅降低了人力、物力消耗,而且准确度和效率都得到了提高。众多的传感器节点组合在一起就形成了一张功能各异的监控网络,能够及时发现农业生产中存在的问题,并准确指出问题发生的位置,分析问题发生的原因,这样就可以不断提高农业生产的综合效益,使我国的农业不断发展和进步。

1智慧农业发展的现状分析

智慧农业是我国农业发展的一个新的方向,区别于传统农业的主要依靠人力和经验的种植方法,智慧农业更倾向于收集和整理农业生产中的宝贵经验,通过物联网技术将这些有效信息进行整合和分析,然后共享。这样做可以大大地提高农业生产的效率,促进农业的现代化发展。

11农业基础设施现代化现状

我国一直都在关注农业发展,尤其是对于基础设施方面的建设更是尤为关心,现在因为政府的重视和支持,农业设施不断改建,我国的农田灌溉设施更加完善,农业电网设施也更加完备,农村的水利设施也得到了完善,我国的农业基础设施建设已经由量的进步变成了质的发展,可以说基本实现了农业生产的现代化。但是不足之处是,东西部的发展还存在着一定的差距,东方的农业发展由于地理和自然条件的先天优势,而且在基础设施建设方面也优于西部,所以东部的发展还是要快于西部。现在我国还在不断打造更加现代化的农业生产,只要我们不断地按照国家的指导执行,在国家的扶持下一定会使农业得到更陕、更好的发展。

12物联网技术在农业中的应用现状

现在网络已经不再是城市的专属,很多村镇都已经引入了互联网,一些发展较快的村镇甚至实现了光纤网络。现在可以说是,村村有电话,村村有限电视入户,基本上实现了网络普及。这也为我国的物联网技术在农业中的运用提供了基础。从种植到收获到销售整个的流程记录和研究农业产品的信息,同时还通过物联网技术对农业的农田、土壤和水利等进行合理的分析和分配,达到效率的最大化。

13物联网技术在农业应用中存在的问题

虽然物联网技术已经在农业生产中得到了应用并起到了重要的作用,但是仍然有一些问题存在。首先,我国的信息化由于受到各种条件的限制并没有得到全面普及,有些农村的基础设施还不够完善,虽然这项技术可能取得了试点的成功,但在普及的过程中受到了限制。除了基础设施方面的力度不够,还有就是农村缺乏专业的农业人才,人们的就业观往往是向往城市的繁华,很少有人才会回到农村,这也是我国农业难以得到发展的一个非常重要的影响因素。还有一点就是技术层面的因素,由于我国的农村宽带技术还不是很完善,所以缺乏信息技术层面的支撑,这也是造成物联网技术难以在农业生产中全面普及的一个重要问题。

14新技术推广应用不足

现在的物联网技术在智慧农业方面的应用还包括对农业新技术的推广应用工作。这项新型技术虽然受到了国家的重视和重点扶持,但是由于现在各地还是处在一个初级的摸索阶段,所以还是会遇到很多问题。比如各地的农业生产现状不同、网络普及程度不同、人才和技术水平不同,这些都造成了新技术的推广受到了限制。而且有的运营商为了获得利益的最大化,往往会对资源的分享设置障碍,这样会造成访问受限和信息共享不畅通等问题,甚至农民需要对新技术进行购买,大大增加了农民的经济负担,这样做也大大地阻碍了农业新技术的推广和普及,同时也会打消农民学习新技术的积极性,影响我国智慧农业发展方案的实施。

2从物联网技术方面对智慧农业进行的方案设计

21物联网技术的指导思想

我们要通过以点带面的方法对物联网技术实施试点应用,然后针对各地的不同情况,进行符合地区特色的规划和实施。我们要以增加农业产品的产量、提高农业产品的质量、不断增加农民的收入为动力,不断构建物联网,收集和推广各项农业生产方面的知识和技术,实现农业生产各项资源的有效整合,把农业生产的产业链进行横向和纵向的延伸发展,同时也有利于促进我国农业的可持续发展,提高我国农业的现代化水平,加快我国农业和国际化接轨的速度。

22物联网技术的方案架构

在此过程中我们不要进行不必要的浪费,要秉承节约成本的原则,根据现在的资源进行收集和整理工作,不断进行资源的整合工作,然后通过物联网共享信息资源,在农业生产的过程中不断进行研发,通过研发的技术再反过来促进生产,达到良性的循环。 智慧农业物联网并不是一个个独立的模块,而是有着自己的方案架构,主要是由田间管理框架、水文管理框架、种子管理框架、气象管理框架、流转管理框架、虫害管理框架、农药管理框架、农机管理框架、物流管理框架、加工管理框架和电力管理框架等众多的组织框架构成的。这样几个框架结构分成几个重要的模块,对我国的农业生产技术进行分类,促进我国的农业技术发展,可以不断提高我国农业人才的技术能力和我国农业的可持续发展。物联网为农业生产提供了安全、可靠的网络运行环境,使我国农业的各项数据和信息都能得到有效的共享。在构建这个方案框架的过程中,还需要国家和政府给予大量的支持才能够完成这项复杂的工程。

23物联网技术的组织保障

对于物联网这项技术,我们必须进行好规划和顶层的设计。这对技术的要求很高,涉及的技术层面也比较广,所以为了实施好资源的收集整理和共享,就必须强化顶层设计,不能出现重复建设的浪费现象。必须投入大量的人力、物力研究这个课题,要不断发展人才并且通过这些技术人才的研究做好农业物联网各方面的制定工作,一定要建立完善的组织保障。相关的政府部门也应该成立专门的工作小组,对这项工作中遇到的问题及时跟踪和解决,不断地对出现的问题进行协调,保证物联网技术的实施能够顺利进行。

24物联网技术的人才培养

目前,我国物联网技术发展受到限制,还有一个重要的影响因素是缺乏相关的人才。物联网技术的人才本来就很缺乏,农业方面的人才更是紧缺。所以现在的当务之急是要联合各大高校和科研机构培养这方面的人才。这些人才不仅要精通物联网技术,还要懂农业生产方面的知识和技术。我国可以组织人员对这些人才进行集中培训,并且根据实际需要为这些人才提供进修条件,使他们能不断地更新和发展技术。除了物联网技术的人才培养,还要加强农业生产人员的培养,这些人才要懂农业技术,还要能掌握简单的物联网技术,这样才能够自主地从物联网上获得自己想要的信息和技术知识,不断促进农业的现在化发展。我国可以建立对这些人才的鼓励机制,对农业现代化做出贡献的人员可以获得相关的奖励,以此激励他们更好地进行农业生产技术的研发和共享。

3结语

综上所述,通过对我国农业发展现状和我国农业信息化程度的分析可以得出结论,我国必须通过物联网技术的实施来促进智慧农业的发展。在我国的农业现代化发展进程中,各级政府都应该对智慧农业和物联网技术引起足够的重视,并且根据各地区的实际情况和各地区农业发展的实际程度加强对物联网技术的实施。这项技术是我国实现农业大数据发展的一项重要途径,一定能促进我国农业向着集约化、科学化、标准化和信息化发展。可以说物联网技术就是一项对于农业生产领域的重要改革,是促进我国农业向着智慧农业发展的必经之路。物联网是一个无处不在的网络,它可以对信息进行收集和智能化的处理,可以将海量的信息进行存储和提取,可以有效地提高我国农业生产技术的交流和发展,可以帮助农民解决在生产中遇到的实际问题。相信在这项科学技术的帮助下,一定可以实现我国农业的全面现代化,这也需要大家的共同努力。

看了“农业物联网技术论文”的人还看:

1 物联网技术论文

2 关于物联网技术对镇江农业示范园经营的影响分析论文

3 物联网技术论文(2)

4 浅谈农业经济相关论文

5 粮食干燥技术论文

物联网技术虽然是一个新型的交叉学科,但是它的几个关键技术都比较成熟,并分别得到了广泛的应用。农业物联网技术的应用是现代农业

物联网(The Internet of Things)是通过各种信息传感设备,如传感器、RFID、全球定位系统、红外感应器、激光扫描器、气体感应器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,与互联网结合形成的一个庞大网络。

物流网不是一项全新的技术,而是在计算机、通讯技术、传感技术、网络技术以及信息处理技术发展到今天而产生的集成性创新技术。农业物联网核心是通过物联网技术实现农产品生产、加工、流通和消费等信息的获取,通过智能农业信息技术实现农业生产的基本要素与农作物栽培管理、畜禽饲养、施肥、植保及农民教育相结合,提升农业生产、管理、交易、物流等环节智能化程度。

实现生产资料生产环节智能化

利用智能传感器可实现农业生产环境信息的实时采集,组织智能物联网可以对采集数据进行远程实时报送。采用不同的传感器节点构成无线网络来测量土壤湿度、土壤成分、pH 值、降水量、温度、空气湿度、气压、光照度和CO2浓度等物理量参数,同时将生物信息获取方法应用于无线传感器节点,通过各种仪器、仪表实时显示或作为自动控制的参变量参与到自动控制中,为农作物大田生产和温室精准调控提供科学依据,优化农作物生长环境,不仅可获得作物生长的最佳条件,提高产量和品质,还可以提高水资源、化肥等农业投入品的利用率和产出率,从而实现生产资料生产的智能化、科学化及集约化。

实现农产品种养环节精细化

精细农业(Precision Agriculture)是利用3S,即全球定位系统(GPS)、地理信息系统(GIS)、遥感(RS)的差异对地块水平精确到平方厘米的一整套综合农业管理技术,实现农田操作的自动指挥和控制。在土壤检测阶段,通过采用高精度土壤温湿度传感器,依据土壤墒情和作物用水次第施行精准灌溉,不但能有效提高农业灌溉用水使用率,缓解水资源日趋紧张的矛盾,并且为作物提供了更好的生长环境,充分发挥现有节水设施的作用,优化调度,提高效益,使灌溉更加简约有效;在环境监测阶段,有线或无线网络可以将温室内温度、湿度、光照度、土壤含水量等数据传递给数据处理系统,如果传感器上报的参数超标,系统将出现阈值(Threshold Value)告警,并自动控制相关设备进行智能调节。

实现农产品加工环节自动化

物联网技术将进一步渗透到农产品的深加工技术与设备中,使农产品的深加工设备朝着自动化和智能化方向发展。在品质分级阶段,计算机视觉和图像识别技术可用于农产品的品质自动识别和分级方面,如种蛋、谷粒表面裂纹检测。梨、苹果等农产品表面缺陷和损伤的检测。根据大小、形状和颜色对黄瓜、土豆、苹果、玉米和辣椒等果蔬进行自动分级,从而实现农产品加工过程的自动远程控制,实现降低成本、提高生产效率和产品品质的目标。

实现农产品流通环节信息化

在农产品运输阶段,可对运输车辆进行位置信息查询和视频监控,及时了解车厢内外的情况和调整车厢内温湿度。还可对车辆进行防盗处理,一旦发现车锁被撬或车辆出现异常,自动进行报警。在存储阶段,通过将粮库内温湿度变化的感知与计算机或手机的连接进行实时观察,记录现场情况以保证粮库内的温湿度平衡,为粮食的安全运送和存储保驾护航。在农产品销售阶段,农产品可以实现网络展示于交易,瞬间完成信息流、资金流和实物流的交易,农产品电子商务已不再仅仅是产品供求交易的操作平台,而是前延至产前订单,后续至流通配送等一体化的综合平台,即紧紧围绕产业链环节,在信息化管理的平台上实现信息共享、管理对接和功能配套。

实现农产品消费环节可溯化

由集成应用电子标签、条码、传感器网络、移动通信网络和计算机网络等构建农产品和食品追溯系统,可实现农产品质量跟踪、溯源和可视数字化管理,即对农产品从田头到餐桌、从生产到销售全过程实行智能监控,及农产品安全信息在不同供应链主体之间进行无缝衔接,大大提高了农产品质量。消费者购物时,只需根据商家提供的EPC(产品电子代码)标签,就可以通过电脑、手机、电话及扫描查询机等各种终端设备快捷方便地查询到农产品从原料供应、生产、加工、流通到消费整个过程的信息(见图2),从而作出适当的购买决策,满足了消费者的安全权、知情权、选择权和监督权。发展的需要,也是未来农业发展的方向。物联网技术对于农业应用来说不是噱头,而是机遇。正如20世纪80年代生物技术在农业领域的应用推动了农业科技的跨越式发展一样,物联网科技的发展也必将深刻影响现代农业的未来。

托普农业物联网监测系统为农田信息获取提供了一个崭新的思路。物联网是通过射频识别、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、将传感节点布设于农田等目标区域,网络节点大量实时、精确地采集温度、湿度、光照、气体浓度等环境信息,这些信息在数据汇聚节点汇集,网络对汇集的数据进行分析,帮助生产者有针对地投放农业生产资料等,从而更好地实现耕地资源的合理高效利用和农业现代化精准管理,推进农业生产的高效管理、提升农业生产效能。应用农业物联网监测系统重要组成的无线传感器网络进行农田土壤墒情信息获取可以满足快速、精确、连续测量的要求。无线传感器网络作为一种全新的信息获取和处理技术,凭借其低功耗、低成本、高可靠性等特点,已逐渐渗透到农业领域。

物联网在农业领域的应用有精耕细作、农业无人机、智能温室等。

1、精耕细作

精准农业是在饲养牲畜和种植农作物时让耕种实践更加受控和准确。在这种农场管理方法中,关键是使用IT和各种项目,例如传感器、控制系统、机器人技术、自动驾驶车辆、自动化硬件、可变速率技术等。高速互联网、移动设备以及卫星(用于图像和定位)访问是精准农业的关键技术。

2、农业无人机

技术随着时间的推移而发生了变化,而农业无人机就是一个很好的例子。如今,农业已成为整合无人机的主要产业之一。地面和空中无人机可以帮助农业实现农作物健康评估、灌溉、监测、药物喷洒、种植以及土壤分析。

3、智能温室

温室种植是一种有助于提高蔬菜、水果、农作物等产量的方法。温室通过人工干预或比例调配机制来控制环境参数。由于人工干预会导致生产损失、能源损失和浪费成本,因此可以借助物联网来改造智能温室,实现智能监视和控制气候,从而无需人工干预。

为了控制智能温室中的环境,使用了根据工厂要求测量环境参数的不同传感器。我们可以创建一个云服务器,以在使用物联网连接系统时远程访问系统。

以上就是关于物联网(嵌入式培养)是什么意思是说物联网就是嵌入式培养吗全部的内容,包括:物联网(嵌入式培养)是什么意思是说物联网就是嵌入式培养吗、专题推荐 - 农业传感器与物联网专题、物联网技术对我国的农业发展有哪些重大意义等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!