1、云计算
一般来讲云计算,云端即是网络资源,从云端来按需获取所需要的服务内容就是云计算。云计算是指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。广义的云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务。
2、物联网
简单理解:物物相连的互联网,即物联网。物联网在国际上又称为传感网,这是继计算机、互联网与移动通信网之后的又一次信息产业浪潮。世界上的万事万物,小到手表、钥匙,大到汽车、楼房,只要嵌入一个微型感应芯片,把它变得智能化,这个物体就可以“自动开口说话”。再借助无线网络技术,人们就可以和物体“对话”,物体和物体之间也能“交流”,这就是物联网。随着信息技术的发展,物联网行业应用版图不断增长。如:智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源等。大的理想就是智慧地球,目前实际生活中存在并在建设的智慧城市都是物联网炒的概念。
3、大数据
大数据(big data),就是指种类多、流量大、容量大、价值高、处理和分析速度快的真实数据汇聚的产物。大数据或称巨量资料或海量数据资源,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的4V特点:Volume、Velocity、Variety、Veracity。
即:数量Volume、多样性Variety、速度Velocity、和真实性Veracity。
4、大数据,云计算,物联网和移动互联网的关系
物联网对应了互联网的感觉和运动神经系统。云计算是互联网的核心硬件层和核心软件层的集合,也是互联网中枢神经系统萌芽。大数据代表了互联网的信息层(数据海洋),是互联网智慧和意识产生的基础。包括物联网,传统互联网,移动互联网在源源不断的向互联网大数据层汇聚数据和接受数据。云计算与物联网推动大数据发展。
大数据云计算和物联网三者之间的区别和联系如下:
物联网产生大数据,大数据助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、互联网之后冲击现代社会的第三次信息化发展浪潮。
物联网在将物品和互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的过程中,产生的大量数据也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。
物联网握手大数据,正在逐步显示出巨大的商业价值。大数据是高速跑车,云计算是高速公路。在大数据时代,用户的体验与诉求已经远远超过了科研的发展,但是用户的这些需求却依然被不断地实现。
在云计算、大数据的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是互联网用户,他们的贡献已远远超出科技十年的积淀。在理想状态下,物联网的传感器和互联网的使用者通过网络线路和计算机终端与云计算进行交互,向云计算提供数据,接受云计算提供的服务。
云计算与大数据概述
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
云计算与大数据的关系
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。
物联网通过大量的网络传感器来接受数据
当前收集的信息数据类型不同,物联网的数据特征与大数据不同,主要特征有:
heterogeneity, variety, unstructured feature, noise, and high redundancy
物联网数据特征:异构型、多样性、无结构化特征、噪声、高冗余。
大数据的4V特征:大量化、多样化、快速化、价值化
当今物联网数据不是的大数据最重要的组成部分,但是据惠普的预测,到2030年,传感器数量将达到1万亿,成为大数据的重要组成部分。
大数据分析
物联网传感器不断从大量连接的各种各样的设备接收数据。随着连接设备数量的增加,物联网系统需要可扩展以适应数据流入。分析系统处理这些数据并提供有价值的分析报告,这些报告将给企业带来竞争优势。
由于数据是根据其类型进行挖掘的,因此必须对数据进行分类以充分利用数据。根据所讨论的数据类型,可以完成不同类型的分析。
流分析将来自传感器的未分类流数据与来自研究的存储数据结合在一起,以找到熟悉的模式。通过这种方法进行的实时分析可以在车队跟踪和银行交易等应用中提供帮助。
地理空间分析
另一类大数据分析方法是基于地理空间,其中IoT传感器数据和传感器的物理位置的组合可以为预测分析提供整体视角。物联网世界中的对象数量众多,其通过无线网络发送数据的能力有助于获得详细的数据转储,这些数据转储可用于促进洞察。
挑战
目前,我们处于大多数企业都必须捕获、分析和报告IoT数据的阶段。但是,由于这些技术仍处于发展阶段,因此这些组织面临许多挑战。例如:
集成
由于物联网数据是通过多种渠道以不同的格式接收的,因此收集和集成它具有挑战性。分析系统需要确保接收到的数据具有足够的可操作性以确定见解的格式。文本挖掘和机器学习技术通常用于从传感器提取文本数据。但是,提取图像、视频等非文本格式的数据无法快速完成。
隐私
物联网系统通常具有敏感信息,需要加以保护以免受外部干扰。不断涌入的数据难以保护数据的每个部分并进行分析。这些系统由于容量有限而依赖于第三方基础结构,这将增加安全风险。因此,采用了诸如数据匿名性和加密之类的预防措施来加强数据安全性。
关于大数据与物联网有什么关联,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
你好,详细解释需要很多文字甚至整篇论文来进行,在这里我尽量用简单话语说清楚。物联网本身是利用互联网把现实中的所有物品利用传感器连接起来,在这个基础上会产生大量的数据,这个数据汇总在一起就是常说的大数据。然后会再利用大数据技术和云计算技术进行分析,得出有用的结果,进一步指导社会的发展,这就是所谓物联网中的大数据。以上仅供参考。
以上就是关于谈对云计算,物联网,大数据的认识全部的内容,包括:谈对云计算,物联网,大数据的认识、大数据云计算和物联网三者之间的区别和联系、什么是云计算,物联网和大数据等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!