早期进入人们生活的因特网,是庞大、错综的聚合体。它由彼此相连的服务器以及与服务器相连的专用设备(主要为个人电脑)聚合而成。但如今,全世界正开始过渡到一种全新的联接拓扑,即我们所说的“物联网”。今天,计算能力仍然由大量专用设备接管,其中也包括个人电脑。它们依托于从前因特网时代沿用至今的大量既定的,并且通常是碎片化的软件接口。计算能力以及计算机智能被分配到或者嵌入于各类设备,就像是在一个专供特定任务的岛屿之上。 虽然,越来越多的计算能力被分配到不同的智能设备上(即物联网中所谓的“物”),但是在不久前,它们仍以完全“无声”的方式使用。现在的智能设备包括移动装置、嵌入式系统、工业控制和车内系统,甚至在某些情况下还包括家庭电器。RFID(无线射频识别)以及GPS(全球定位系统)标签也能说明,在物联网,这些早期的静态对象也能被“激活”,并能够在无人干预下储存及传送与之相关的数据。但是到2020年,预计仍将有40亿人口以及超过310亿部设备在使用所谓的“因特网”。于是,物联网的出现绝非只是用各类信息将数字世界变得更为错综繁杂。当几乎所有的设备或对象都开始需要处理能力以及自动执行任务的能力时,并不能只对系统本身进行扩展,而是要做出巨大的变化。不管物联网以何种形式呈现,有一点是确定的,即它不但将会在广泛意义上改变计算的本质,而且也将给用户的期望和眼界带来改观,从而服务的方式,包括安全性等也必须加以准备。计算能力的转移人们最初得出的重要结论是这样的,将计算能力从某些既定的企业(包括供应商和客户)中转移到那些能够通过M2M(机器与机器对话)方式,在无需人工干预的情况下,使对象得到处理和互动,并能为其建立标准的企业。物联网拥有的潜力能够使之成为一个戏剧性的均分者,有一部分原因是尖端技术并不再仅限于大型企业,而且物联网还将减少这些企业对拓展的寻求。从某种意义上说,大型企业将面临最大的挑战。从商业的角度而言,我们认为自20世纪60年代开始,日本电器商在艰难中崛起并最终主导电器时代能够最好地体现物联网的效用。日本电器商同时也缔造了“物”的概念。“物”之本身不再具有盈利,所以下一代的成功商家将是那些能嵌入及连入智能,并以此投入市场的企业。在未来的十年,世界将以何种形式改变,我们刚刚做了一个构想。那么企业又将如何准备呢?瞬息万变中,又会带来哪些特定的问题? 大数据及云技术第一类挑战将是数据分析师以及供应商都会提及的“大数据”方面的问题,也就是说超大规模的潜在数据将需要被处理、储存并转移至各类“物”中,抑或由其转移而出。这体现的是一类分析方面的问题,尤其是关于M2M设备所生成的大量数据间的重要的组合方式,或者是关于这些数据的储存地点。“大数据”是一堆无限庞大的数据,而且从本质上,它们无时不刻地都在增量,让现有的科技黔驴技穷。从前因特网时代延续而来的独立储存系统根本无法在物理或者逻辑层面上满足这类储存需求,这些储存系统很快被拖垮。因此,云储存应运而生。但事实上,这仅仅是将问题踢给一群服务提供商,尔后还会产生各种新的问题。这些服务提供商需要达到怎样的标准才能满足数据的物理以及逻辑储存,并且在今后得以迁移至他处?他们又是是否能够符合规章制度以及隐私标准——然而这些制度或标准对于不同的国家,贸易体甚至行业通常会大相径庭。而“云服务”同样也带来一系列的安全问题,例如连接安全性将的验证、登入方式,以及怎样防止可能发生的故障。如果上述关于大数据的基本问题无法得到解决,物联网看上去就仿佛是一个“焦虑的因特网”,只要小小的故障就能导致巨大的后果。只有以确切的方法保护M2M系统不受这一连锁反应的危害,才不会减缓物联网在下一个十年中的推广。 英特尔智能系统框架诸如英特尔之类的公司辩称,唯一的生存之道应该是采用将一系列技术交织相联并以此为基石,而不是将那些技术分散并逐个建立。为此,智能系统框架(Intelligent Systems Framework,ISF)提供了多种解决方案,包括打造企业商品处理器,对所有装置初始状态的可管理性进行考量,以及确保这类基础设施将在(固定、无线或近场无线电式的)异构网路中运行。然而,该框架最具吸引力的地方还是它嵌入式安全的理念。企业迫切需要嵌入式安全,这并非是危言耸听,2010年Stuxnet病毒对工业控制技术方面的攻击就足以证明。系统此前从不被认为具有安全隐患的原因竟然是人们懒得对它们下手。但是,如果工业控制系统能够得到保护,是否充斥于物联网中的其他独立系统也能如此呢?解决上述问题的办法,就是将软件访问上一层级内容时所需的必要电路进行嵌入式处理,而非使用静态的手段对芯片加以保护。这就使得“可信化平台模组”应运而生。它可以对加密空间提供保护,使之能够储存“认证令牌“一类的数据,或者嵌入特定程序,让恶意软件无法对系统造成直接破坏。与软件服务套件一起嵌入的安全体系将为物联网的发展增添重要可能。同时,英特尔还是许多主动性解决方案的发起者。例如,由英特尔发起的“开放数据中心联盟”就旨在通过一系列大型企业及部分技术服务公司之间的合作,共同制定标准,将ISF的技术方案紧密衔接。规章和承诺数据保护开始慢慢变为国家级的或者超国家级(supra-national)政府或机构的重要功能之一。种种迹象表明,解决这些问题需要耗费本十年剩下的时间,甚至更长,并进而转变为一个全球化的体系。当越来越多的来自对象或“物”的数据在单个用户周围流动,个人隐私将显得愈发重要。这是由大数据引发的问题,也是各类组织在处理大数据时所要面对的。迄今为止,收集到的个人的数据还十分固定,例如姓名、住址以及社保账号等。但这些数据被交易的情况越来越多,因为它们与系统相联,能够推测并识别出何人在何时与何人做何事。不过现在讨论隐私问题可能并没有实际意义。因为大多数上传的数据是分散在不同的数据库间的,它们很快就会被删除。然而在大数据的经济原则“驱动”下,这些数据碎片最终会被整合,因此如何监管私人数据将是政治性的问题。人们常常假设,物联网将由自由市场以充满竞争却亦十分融洽的方式建立,看来它的雏形将通过政府、约定、或协议条款形成。政府也一定会从大数据中捞到好处,的确,最具争议的方面是各国寻求挖掘关于子民生活习惯和生活圈数据的方式。因此,大数据的未来也极具争议。立法规模多大才可能影响商业?欧盟的《数据保护指令》便是一个很好的例子。当下,该指令主要关注了一些十分重要的子议题,以此改进违反数据隐私的通知。这些跨国章程将以类似的限定方式对物联网上收集到的或者泄露的数据加以制约,成为具有实际意义的标准。此外,部分组织也将能知悉,当特殊利益集团或个人想要考验法律的底线时,法院对此的忍耐限度究竟有多大。公司必须准备好应对复杂多变的情况,比如说要允许个人用户以某种方式选择退出,而该方式可能体现的是数据过剩时代的主要挑战。结论总之,尚未有简单的安全解决方案来应对上述问题。组成物联网的所有对象将会含有嵌入式安全系统。人们将使用实时分析处理对象产生的数据,从以自动化的方式对其进行管理。这种管理将是无人干预的,除非某些阈限被攻破。政府将会同时寻求数据接入以及引入“杀毒开关”,这能减少设备因经济或政治利益而受到的潜在攻击。不管企业现在是否涉及这一事实,物联网时代总会以这样或那样的形式来临。忽略物联网会改变组织以及他们所服务的顾客和市民,将是巨大的错误。同样,假设物联网会以互联网曾经的方式发展也是愚蠢的。在崭新的世界,政府、顾客以及市民都将受到积极的影响。 更多
个人认为物联网主要价值在于:
1、使得各类信息、咨询可以更容易的被获取
2、大量信息的集合能够更容易的产生衍生价值
3、将一定的人力资源从繁杂的信息数据采集和处理中解放出来、
4、提高生活、工作、学习等各方面的便捷性,提高人的幸福感
我们身边的共享单车即应用了物联网技术,《物联网时代》将物联网定义为:“通过基于互联网协议的分布式云端,将所有的东西都互联起来。”其作者马切伊认为,物联网实际上并不是什么新的发明,它以不同的形式以及存在了10年以上的时间。
连接带来了时代的需求的变化,当世界上有十亿网民的时候,Facebook就自然的出现了。
如果你仔细地观察过去25年里的科技企业,你就会发现变化一直在发生。
每隔3-7年,企业就必须对它们进行重塑。那些错过了一次技术转型的公司如果能迎头赶上的话,那么还有可能重新恢复过来。而那些错过了两次技术转型的公司,则有可能已经消失了。如果你有兴趣的话,可以查看一下50年前标准普尔500强公司的名单,如果统计无误的话,截止到2017年,只有19%的企业现在依然存在。
当我们在网络上看着90后“佛系”“中年人”的话题捧腹大笑的时候,其实我们没有看到这背后透露着的真正原因是:90后们生活在“变的太快”的世界里,太多学习工作生活里的问题他的上一辈甚至前一代人都没有遇到过,他们的迷茫那么大,以至于有些人认为:至于以不变应万变才是“正解”。
而如果我们把这件事扩展的更大一些,无论我们的真实年龄如何,我们都注定属于将遭遇革命性变革的一代人。这也正是马切伊克兰兹(Maciej Kranz)将每一个商业领域正经历“革命性变革”的这一代人叫做“物联网一代”的原因。
什么是物联网?
一个相对繁琐的解释是:
物联网是互联网的一个延伸。互联网的终端是计算机(PC、服务器),我们运行的所有程序都是计算机和网络中的数据处理和数据传输,没有涉及任何其他的终端。而未来,所有物和物之间都可以实现互联。物联网能够让互联网连接对象使用嵌入式传感器进行数据收集和交换的网络,汽车,厨房电器,甚至心脏监视器都可以通过物联网连接。随着物联网在未来几年的发展,更多的电子设备将加入物联网的阵营。
而在《物联网时代》中,物联网有一个更为简单明了的定义,它是“通过基于互联网协议的分布式云端,将所有的东西都互联起来。”其作者马切伊·克兰兹是全球物联网专家,思科公司战略创新集团副总裁。在本书中,他基于思科的工作视野和在全球物联网行业一线的长期实践经验,从数十个他参与实施的物联网案例中,总结出4种已经获得验证的、可以快速回报的场景。顺带提一下,思科公司的主营业务就是物联网。
总的来看,物联网的本质还是互联网,只不过终端不再是计算机(PC、服务器),而是嵌入式计算机系统及其配套的传感器。在这个意义上说,物联网是一个很大的概念。如果单从学科上分解来看的话,它涉及到通信,信号处理,计算机视觉,自动化控制,电路系统,信息融合,无线自组织网络,MEMS传感器设计等等。
可以说,这是计算机科技发展的必然结果,为人类服务的计算机呈现出各种形态,如穿戴设备、环境监控设备、虚拟现实设备等等。只要有硬件或产品连上网,发生数据交互,就叫物联网。实际上,大数据概念最早的提出,也是因为物联网的兴起,传感器接入网络之后,大大增加了可以挖掘的数据量,网络上的数据不但包括社交网络这种来自用户的数据,还有了来自物理世界的数据。
物联网发展速度为什么这么慢?
正如马切伊在他的书中提到的那样,物联网实际上并不是什么新的发明,它以不同的形式以及存在了10年以上的时间。
它的本质便是上个世纪学术界开始兴起传感器网络、自组织及多跳网络(wireless sensor network, ad-hoc network, wireless multi-hop network)。RFID在智能物流上的应用只是最为基本的应用场景,当前的研究远比这个更为复杂。但是,受限于应用场景和技术实现的瓶颈,物联网的发展,其实无法像互联网那样爆发。
首先,现阶段的物联网应用基本都是“锦上添花”的东西,需求性并没有那么强,如可穿戴设备和智能家居,这也就是为什么很多智能硬件叫好不叫座的根本性原因;也正是因为这个原因,商业上也不会出现滴滴打车那样的持续性投入,这又反向钳制了这一技术的商业化发展。
其次,物联网技术上还有很多没有突破。最大的技术瓶颈可能在MEMS传感器的性能和无线传感网的设计实现上。
再有,就是目前在应用上还找不到突破。目前比较活的也就是智能硬件,无人机,工业物联网这块。但是离人类和互联网形成的应用需求还无法相比,目前还没出现。
最终,物联网应用的制约因素还是能源,物联网应用场景的扩展一直在等待电池技术的突破。所以,目前来说物联网首先会在那些对能量要求不是很高的方向首先取得突破,比如智能硬件和工业设备上。
总之,物联网的方向毋庸置疑有着广阔的发展前景,但是当前基础研究和相关技术还有待发展,因此看起来发展缓慢,甚至就是停滞,学术和商业界都在等待一个颠覆性应用可以让“物联网”来一次诈尸。
共享单车中的物联网技术
完全可以想象,物联网的技术前景是广阔的。
实际上,2016年底兴起的共享单车就是一个成功的物联网商业化作品。
看似简单的单车使用过程,包括了物联网技术,人联网技术(移动互联网),自动控制技术,GPS全球定位技术等多个技术领域。但是整体的技术实现并不复杂,并没有涉及到什么创新黑科技。
首先,一辆单车需要以下几样设备参与运作:
•单车上面的智能锁(这个是核心关键,包括了GPS定位模块,GPRS通讯模块,主控芯片,电控锁模块等)
•用户手中的手机和APP
•单车提供商的云服务器(平台)
关键的环节在于单车和云服务器之间的通讯,采用的是老旧的GPRS技术。为什么要用这种落后的2G技术呢? 不使用LTE呢?答案很简单: 省钱省电覆盖好。
共享单车是典型的物联网应用场景,也能很好的克服我们之前说的物联网现存的耗能的问题。它对网络的要求并不是大数据量(它只需要很少很小的几条消息),而且它不需要速度很快(几秒钟的时延,完全可以忍受),它需要很低的功耗和很长的待机时间。
早期阶段,共享单车甚至依靠短信和云服务器进行通信,所以等待解锁的时间比较久,大约需要6-10秒。
还有一个小细节,不知道有没有人遇到过。我曾经用过一次支付宝旗下集成的一款市面上不太流行的单车品牌,扫码之后,手机提示我:锁没电了。这是我第一次意识到,原来单车的锁需要电!?
当然,正因为共享单车智能锁有这么多模块,所以它当然要耗电的。
为什么早期的单车骑起来特别累?除了一些材料和工学设计的原因,也是因为:你在充当人肉发电机。后来,为了改善用户体验,开始流行太阳能充电了。所以,越来越多的单车装上了太阳能发电板(如下图)。
经过过去一年半的迭代和升级,现在市面上所有的单车使用体验相比最早的那一批已经有了质的飞跃。
同时,近些年上市的一些空气净化器,穿戴设备以及家庭环境监控设备也已经完成了一代代的自我迭代和进化,在目前的消费场景下,服务着千家万户,这正是物联网技术未来商业化发展的一个缩影。
如何顺势借力风口,成为一名成功的物联网创业者或者职场精英?
BI Intelligence 预计:到 2020 年,地球上将有超过 240 亿的物联网设备,约为人均 4 台,当我们接近这个阶段时,60 亿美元将流入物联网解决方案,包括应用程序开发,设备硬件,系统集成,数据存储等。然而这些投资在 2025 年将产生 13 万亿美元的效益。
然而正如前面所说的,基于一些目前无法攻关的技术难题,它的商业前景也是复杂的,特别是对于创业者而言,这不是一个好消息。创业者大部分都是小公司,无论多么先进的技术,一旦市场成熟,目前的互联网大鳄公司都可以迅速投入数倍于你的资金,在非常短的时间内模仿你,超过你,压垮你。
而且,目前全世界范围内,也已经有多家物联网平台已经初具规模,比如Amazon Web 服务、Microsoft Azure、ThingWorx 物联网平台、IBM 的沃森、思科物联网云连接、Salesforce IoT 云、Oracle 集成云以及 GE Predix。
因此,物联网行业的创业者应该处理好两个问题。
首先,科技行业想突破垄断,对于微软和IBM这样的大企业而言,是技术积累。对于我们这样的个人或小团队而言,最好的方法是缩小目标客户群体,专注于某一个具体的领域或者攻关一项技术去解决某一个具体的问题。主动缩小目标客群的好处就是大企业不容易来抢市场,而你我们相对容易找到目标客户,最终说服他们买你的产品。
其次,以热门概念操作以达到融资目的,而从不关心成本和收入是最错误的做法。
总结来看,就是组建一个相对小型的团队来维护一款小产品或者一个项目,这样可能反而容易成功,比如团队或项目被大公司收购。
如果你只是想成为一个工作体面收入又高的技术工作者和相关从业者,有一条相对明确的职业发展方向可以借鉴:学Java,去一家当地比较有名的计算机类企业应聘;取得一定成绩后,跳槽至国内一线物联网公司;3-5年后,有机会跳槽去国际一线企业在华公司应聘,如前面所说的这几个大型的物联网平台。如果在继续在里面服务几年,等到物联网技术真正实现商业化爆炸的那一天,你绝对已经可以斩钉截铁向别人介绍说:你好,我是物联网行业的资深行业顾问!就像我们前文提到的《物联网时代》作者马切伊先生一样。
就算不完全复制这条路,普通人想要搭上物联网这班车也不是没有可能的。毕竟,物联网的范围其实极其广泛。无论是大数据分析师、GPS定位还是井下探测,都可以算是物联网的一部分。只不过,程序猿是物联网现阶段发展时期,需求最大平均工资最高的工种而已。
以上由物联传媒提供,如有侵权联系删除
物联网时代,大量的数据从不同的设备传感器产生,单机数据库系统肯定无法存储这么大量的数据,在选择数据库方面,肯定要选择具有分布式能力存储的数据库。
在物联网时代,数据之间还有一个非常重要的特性,那就是数据之间的关联性。不同的数据从相互连接的互联网设备传感器中产生,由于不同的传感器相互连接,协同工作和采集数据,如何将大量具有相互关联的数据保存在数据库,这里我推荐使用图数据库来进行存储。
图数据库相对于其他数据库来说,最大的优势就是查询数据之间的关联性会更加快速,消耗的时间会更短。打个比方,在社交网络中,我们想要查询在用户A的粉丝中,粉丝关注了B的用户。如果使用传统关系型数据库来存储用户的关注关系,在上面的数据统计中,要使用两层Join才能算出结果,而关系型数据库Join操作会很慢。使用图型数据库存储数据的话,图中的点为用户,边为用户的关注关系,在查询A的粉丝,同时粉丝也关注B的用户,只需要遍历两层关注关系就能很快查询到结果。
图数据库也属于NoSql数据库的一种,常用的图形数据库有,JanusGraph、Neo4j、Cayley、dgraph。不同的图数据库,底层实现也不尽相同。
JanusGraph是一种分布式图数据库,由Java语言开发,可以使用Hadoop生态存储系统作为数据源,构建出数据大图。是TiTan图数据库的开源版本,支持事务的ACID。
Neo4j是一种单机的图数据库,其优势就是能够快速安装并且使用,便于新同学上手。你的数据量一般不大的话,我推荐使用Neo4j,直接使用Neo4j相关的API就可以将数据模型图构建而出,然后使用Neo4jCypher查询语言,就可以分析数据,Cypher是一种类SQL的语言。
Cayley和Dgraph都是使用Go语言实现的图数据库,Go语言的最大特性就是其编译速度和开发便捷性,Cayley和Dgraph都支持分布式存储,不过都不支持SQL语言查询数据,Dgraph不支持事务,而Cayley支持事务,不过在开源社区,Dgraph比Cayley更加活跃,这里优先建议使用Dgraph作为物联网的存储数据库。
总体来说,在物联网时代,一定要学会使用图数据库,在分析大量数据之间的关联性时,图数据库就能够派上用场,图数据库最大的优势就是分析不同数据之间的关联性。
以上就是关于物联网时代的来临将带来什么全部的内容,包括:物联网时代的来临将带来什么、物联网时代:什么才是物联网的真正价值、物联网时代即将到来,这些知识点你Get到了吗等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!