工业物联网都包括哪些方面

物联网0193

工业物联网都包括哪些方面,第1张

工业物联网起源:

工业领域的生产设备在以往是没有主动联网功能的,导致生产数据、物料消耗、产品跟踪全部由人工来完成,效率低、错漏多,而且随着产品迭代速度越来越快,需要制造企业拥有极强的敏捷性(例如商家插单生产,可以随时调整生产计划)

物联网的作用就在于能通过硬件技术将设备的生产数据实时获取(这在之前是不可能的),最后经过大数据分析呈现在用户的手机端(例如物料消耗了多少,库存还有多少,每条生产线的生产进度是多少),一旦客户调整需求/插单,就可以通过实时获得的数据合理调整生产计划,达到柔性生产。

工业物联网由大量相连的工业系统所组成,这些系统会相互通讯,并协调数据分析与行动,有助于提升工业效能、有利于整个社会。透过传感器与致动器衔接数字世界与实体世界的工业级系统,可解决更为复杂的控制问题。目前各种系统,正在结合巨量模拟数据,解决方案,希望能透过资料与分析取得更深入的知识。

物联网在工业领域的应用有制造业供应链管理、质量控制、车间监控、数字孪生、库存管理。

1、供应链管理

物联网设备使用GPS来有效跟踪各种商品及其交付。利用物联网技术将传感器连接到产品上,使企业能够准确预测送货时间,并消除送货相关的问题。

此外,物联网增加了企业资源计划,以消除手工操作文档的需求。企业资源计划使管理部门的跨渠道可视性成为可能,它帮助评估生产活动。

2、质量控制

机械、设置和性能的状态共同直接影响商品的质量,它们都可以通过制造商可以集成到物联网网络中的独特传感器进行跟踪。

物联网网络实时披露任何故障,使运营商能够采取适当的行动阻止质量下降,这可能会因制造有缺陷的产品而影响该行业的盈利能力。

3、车间监控

在物联网的帮助下,制造业可以访问、识别和规范制造执行过程,使该部门能够跟踪从开始到成品的生产过程。

物联网还有助于发现潜在的棘手情况、机器问题和可能造成损害的不当员工行为。物联网系统中的人工智能、尖端传感器和摄像头实现了所有这些。

4、数字孪生

产品的数字孪生是由于物联网而创建的。管理层可以利用它来收集产品数字孪生的数据,以评估其功效、效率和准确性。

此外,数字孪生还改进了资产管理和故障管理等流程,帮助行业预测基线完成情况,并在截止日期前有效完成生产。

5、库存管理

使用物联网技术可以简化和自动化库存跟踪。操作人员可以远程跟踪每个库存项目的状态、位置和移动,这有助于缩短订购库存和发货之间的时间。

       工业物联网是一个快速发展的行业,占全球物联网支出的最大份额。据IDC和SAP称,2019年,全球60%的制造商使用连网设备产生的数据来分析流程并确定决策。他们不仅可以监控制造过程中的复杂流程,还可以实现这些流程的自动化,为管理者提供了更详尽的细节。

工业物联网平台的基本功能:

具备:监控大屏、设备地图、系统统计、设备监控、实时数据及曲线、Web组态、故障报警管理、数据报表、远程控制、视频监控、角色管理、人员管理、设备管理、空间管理。

1 数据远程监控: 可以通过网页或者手机APP实现设备数据监控,第一时间了解设备运行状态、修改参数等;

2 设备报警推送: 可以通过短信报警、微信报警、APP报警推送等方式,推送设备故障状信息态,及时掌握设备运行状态;

3 云组态: 通过电脑web网页、手机网页和手机APP直接查看设备的组态画面或数据列表;

4 视频监控: 集成视频监控功能,实现数据和视频的同步显示,实时监控工业现场画面;

5 数据采集存储与分析: 通过对底层设备采集的数据进行合理分类并进行数据存储的优化,实现海量数据的快速检索,同时提供面向企业经营的决策分析,为设备的有效利用提供支撑。

6 用户项目权限管理: 管理者可根据实际应用创建账号,前台可查看的设备组态,后台可对所有的设备、数据、用户进行管理。

    工业物联网平台将提供不同的功能组合,包括工业物联网端点管理与连接性,物联网数据的捕获、摄取与处理,数据的可视化与分析,以及将物联网数据整合到业务流程和工作流程中。

工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。

所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。

思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。

首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。

互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。

作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。

总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:

1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;

2、MCU的发展使得计算能力快速提升;

3、以调制技术为核心的通讯技术发展为联网建立的管道基础;

4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;

工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。

通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。

这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。

通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:

1、使用设备开放的协议;

2、使用设备自带的传感器;

3、添加新的传感器;

4、改变观察侧面及维度,使用全新的采集模式;

其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。

所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;

在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:

1、传感级;

2、设备级;

3、产线级;

4、车间级;

5、企业级;

也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。

价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。

我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。

总之,我们应该从以几个方案来确定工业物联网的建设原则:

1、期望获得什么结果?

2、期望用什么方式获得想要的结果?

3、需要信息基础提供什么?

4、工业物联网是否能够获得这些信息?

5、工业物联网如何获得这些信息?

6、获得这些信息的性价比如何?

7、回归分析,评估预期结果是否符合经济利益?

8、落地实施。

关于这个问题yyseoer顾问表示物联网和工业的联系主要体现在以下两个方面:

1机对机通信。机对机通信(m2m)是将数据从一台终端传送到另一台终端,也就是机器与机器的对话。但从广义上m2m可代表机器对机器、人对机器、机器对人、移动网络对机器之间的连接与通信,它涵盖了所有实现在人、机器、系统之间建立通信连接的技术和手段。

2信息物理融合系统。信息物理融合系统cps是一个综合计算、网络和物理环境的多维复杂系统,通过3c技术的有机融合与深度协作,实现大型工程系统的实时感知、动态控制和信息服务。cps实现计算、通信与物理系统的一体化设计,可使系统更加可靠、高效、实现协同,具有重要而广泛的应用前景。

工业互联网不是工业的互联网,而是工业互联的网。它是把工业生产过程中的人、数据和机器连接起来,使工业生产流程数字化、自动化、智能化和网络化,实现数据的流通,提升生产效率、降低生产成本。

从技术架构层面看,工业互联网包含设备层、网络层、平台层、软件层、应用层以及整体的工业安全体系。与传统互联网相比,多了一个设备层。

工业物联网是工业互联网中的「基建」,它连接了设备层和网络层,为平台层、软件层和应用层奠定了坚实的基础。设备层又包含边缘层,总体上,工业物联网涵盖了云计算、网络、边缘计算和终端,自下而上打通工业互联网中的关键数据流。

工业物联网从架构上分为感知层、通信层、平台层和应用层。

以上就是关于工业物联网都包括哪些方面全部的内容,包括:工业物联网都包括哪些方面、物联网在工业领域的应用、工业物联网平台拥有哪些基本功能呢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!